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Abstract. This note presents a nonparametric Bayesian approach to fitting a distribution
to the survey data provided in Kilian and Zha (2002) regarding the prior for the half-life of
deviations from purchasing power parity (PPP). A point mass at infinity is included. The
unknown density is represented as an average of shape-restricted Bernstein polynomials,
each of which has been skewed according to a preliminary parametric fit. A sparsity prior
is adopted for regularization.
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1. Introduction

Kilian and Zha (2002) present results from a survey of economists asking about prior
beliefs for the half-life of deviations from purchasing power parity (PPP) for real exchange
rates. The survey data are summarized in Table 1 and displayed in Figure 1. The numbers
in the table are averages of the responses from 20 economists to a questionaire.1 The data are
composed of n = 9 pairs (hi, yi), where yi = Pr[h ≤ hi] and hi ∈ {1, 2, 3, 4, 5, 6, 10, 20, 40}
(measured in years). Using the survey data, the authors estimate what they call a “consen-
sus prior,” which they compute through the lens a monthly autoregressive model with 12
lags.

In this note I provide an alternative approach to estimating a smooth distribution from
the survey data. I treat the problem as an exercise in Bayesian inference.2 In particular,
I take a Bayesian approach that involves nonparametric regression using Bernstein polyno-
mials subject to shape restrictions.3 The procedure can be thought of as providing flexible
variation around a preliminary parametric fit.

There are two additional novelties regarding the distribution I compute, both of which
are related to my own research on PPP.4 First, I allow for a point mass at infinity. Second, I
transform the distribution into a prior for the first-order autoregressive coefficient for annual
observations.

2. The model

The model I adopt for the unknown distribution for the half-life h is a mixture of an
atom located at infinity and a density over over the positive real line:

p(h|θk, w) =

{
w h =∞
(1− w) f(h|θk) h ∈ [0,∞)

, (2.1)

where Pr[h = ∞] = w. The density component in (2.1) is itself a mixture — a mixture of
basis density functions:

f(h|θk) :=
k∑
j=1

θjk fjk(h), (2.2)

where θk = (θ1k, . . . , θkk) and θk ∈ ∆k−1, the simplex of dimension k − 1.
The basis density functions are related to Bernstein polynomials. The idea can be found

in Quintana et al. (2009), for example. Let Q(x) denote the cumulative distribution funtion
(CDF) for a continuous random variable defined on the real line. Thus q(x) := Q′(x) is the
probability density function (PDF). (For the half-life, Q(x) = 0 for x ≤ 0.) Define

fjk(x) := Beta
(
Q(x)|j, k − j + 1

)
q(x), (2.3)

1The paper refers to “a survey of 22 economists.” However, one of the authors confirmed there were only
20 responses.

2An approach that is similar in spirit can be found in Gosling et al. (2007).
3Fisher (2015) places the approach taken here is the context of what he calls simplex regression.
4Dwyer and Fisher (2014).
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Table 1. Survey prior probabilities for half-life.

h ≤ 1 h ≤ 2 h ≤ 3 h ≤ 4 h ≤ 5 h ≤ 6 h ≤ 10 h ≤ 20 h ≤ 40 h > 40

Percent 4.6 14.1 31.4 49.6 64.0 75.8 83.9 91.0 94.1 5.9

Notes: [This table replicates of Table I in Kilian and Zha (2002).] Average probabilities based

on a survey of [20] economists with a professional interest in the PPP question. The survey was

conducted by the authors in July and August 1999.

where 1 ≤ j ≤ k ∈ N. Note

Beta(x|a, b) =
xa−1 (1− x)b−1

B(a, b)
, (2.4)

where B(a, b) =
∫ 1
0 x

a−1 (1 − x)b−1 dx is the beta function. Also note fjk(x) ≥ 0 for
x ∈ (−∞,∞) and ∫ ∞

−∞
fjk(x) dx = 1. (2.5)

Beta densities with integer coefficients can be interpreted as normalized Bernstein poly-
nomial basis functions. With integer coefficients,

Beta(x|j, k − j + 1) =
k!xj−1 (1− x)k−j

(k − j)! (j − 1)!
, (2.6)

which is a polynomial of degree k − 1 in x. Bernstein polynomials have a number of useful
properties that have led to their use in nonparametric estimations.5 For example, the
“adding-up” property of Bernstein polynomials amounts to

k∑
j=1

Beta(x|j, k − j + 1) = k. (2.7)

This property delivers the following result:

k∑
j=1

1

k
fjk(x) = q(x). (2.8)

In particular note f11(x) = q(x).

Cumulative distribution function. In order to make contact with the survey data, we
will need the cumulative distribution function associated with (2.1). To that end define

F (x|θk) :=

k∑
j=1

θjk Fjk(x), (2.9)

5See, for example, http://en.wikipedia.org/wiki/Bernstein_polynomial.

http://en.wikipedia.org/wiki/Bernstein_polynomial
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Figure 1. The survey data and the survey fit. The fit delivers a 4.6%
chance that the half-life is infinite. The dashed line corresponds to the
implied asymptote at 0.954.

where

Fjk(x) :=

∫ x

−∞
fjk(t) dt =

∫ x

−∞
Beta

(
Q(t)|j, k − j + 1

)
q(t) dt

=

∫ Q(x)

0
Beta(t|j, k − j + 1) dt

= IQ(x)(j, k − j + 1),

(2.10)

where Ix(a, b) is the regularized incomplete beta function. The adding-up condition (2.8)
implies

k∑
j=1

1

k
Fjk(x) = Q(x). (2.11)

With (2.8) and (2.11) in mind, I refer to Q as the centering function. The centering
function provides location and scale for the fit. Deviation of the weights θk from uniform
(i.e., deviations from θjk = 1/k) allow for variation around the centering function. Larger
values of k provide greater flexibility.

Degree elevation. One of the properties of Bernstein polynomials is that of degree el-
evation, by which lower-degree polynomials can be represented exactly as higher degree
polynomials. Degree elevation is useful for combing models with different values of k.
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Applied to mixtures of Beta distributions, degree elevation implies that every mixture of
order k0 can be represented as a mixture of k1 > k0. Define the k1 × k0 matrix

Ak1,k0 := Ak1,k1−1Ak1−1,k1−2 · · ·Ak0+1,k0 , (2.12)

where the (k × k − 1) matrix Ak,k−1 is characterized by

Ak,k−1ij =


1− (j/k) j = i

j/k j = i− 1

0 otherwise

. (2.13)

In addition, define the row vector

fk(x) :=
(
fk1(x), . . . , fkk(x)

)
. (2.14)

One may confirm that

fk1(x)Ak1,k0 ≡ fk0(x). (2.15)

As a consequence (and treating θk as a column vector),

f(x|θk0) = fk0(x) θk0 =
(
fk1(x)Ak1,k0

)
θk0

= fk1(x)
(
Ak1,k0θk0

)
= fk1(x) θk1 = f(x|θk1),

(2.16)

where θk1 = Ak1,k0θk0 . For example, Ak,1 θ1 = (1/k, . . . , 1/k)>.

Reparameterization. It is convenient to reparameterize the model as follows.
Fix K ≥ k and let

φ = (1− w)AK,k θk. (2.17)

The model [see (2.1)] can be reexpressed as

p(h|φ) =

{
1−

∑K
j=1 φj h =∞

f(h|φ) h ∈ [0,∞)
, (2.18)

since

1−
K∑
j=1

φj = w and f(h|φ) ≡ (1− w) f(h|θk). (2.19)

I will use (2.18) for estimation.

3. Bayesian approach to estimation

The goal is to compute the distribution p(h|y) for h conditional on y = (y1, . . . , yn) where
the uncertainty regarding the latent variable φ has been integrated out. Referring to (2.18),
this distribution is given by

p(h|y) =

∫
p(h|φ) p(φ|y) dφ =

{
1−

∑K
j=1 φj h =∞

f(h|φ) h ∈ [0,∞)
, (3.1)

where

φ := E[φ|y]. (3.2)
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Define

w := 1−
K∑
j=1

φj and θ :=
φ

1− w
. (3.3)

Using (3.3), we can write

p(h|y) =

{
w h =∞
(1− w) f(h|θ) h ∈ [0,∞)

. (3.4)

Note that φ is computed from the posterior distribution for φ:

p(φ|y) =
p(y|φ) p(φ)

p(y)
, (3.5)

where

p(y) =

∫
p(y|φ) p(φ) dφ. (3.6)

For future reference let

L := p(y). (3.7)

We can use L to compare models with different hyperparameter settings. For example, we
can compare the base model to one with no point mass at infinity.

The likelihood p(y|φ) and the prior p(φ) are described next.

Likelihood. I assume the connection between the observations (i.e., the survey data) and
the parameters is given by

yi = F (hi|φ) + εi, (3.8)

where εi
iid∼ N(0, σ2). Note

F (hi|φ) =
K∑
j=1

φj Xij , (3.9)

where

Xij := FjK(hi) = IQ(hi)(j,K − j + 1). (3.10)

This setup delivers a linear regression:

y = Xφ+ ε, (3.11)

where X is an n×K design matrix. For K > n, X cannot have full column rank.
The likelihood including the nuisance parameter σ2 is

p(y|φ, σ2) =

n∏
i=1

N
(
yi|F (hi|φ), σ2

)
, (3.12)

where N( · |µ, σ2) is the PDF of the normal distribution with mean µ and variance σ2. We
obtain the marginal likelihood for φ by integrating out σ2, using p(σ2) ∝ 1/σ2:

p(y|φ) =

∫
p(y|φ, σ2) p(σ2) dσ2 ∝ S(φ)−n/2, (3.13)
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where

S(φ) := (y −Xφ)>(y −Xφ). (3.14)

Prior. Recall φ = (1− w)AK,k θk. It is convenient to specify the prior for φ via the prior
for k, θk, and w. Let p(k, θk, w) = p(θk|k) p(k) p(w), where p(w) and p(k) will be specified
later. For the time being, we note that we require p(k) = 0 for k > K.

Let the prior for θk be given by

p(θk|k) = Dirichlet
(
θk|(α/k) ιk

)
, (3.15)

where α (a fixed hyperparameter) is the concentration parameter and ιk is a vector of k
ones. The PDF of the Dirichlet distribution is given by

Dirichlet(θk|λk) =
Γ(λ0k)∏k
j=1 Γ(λjk)

k∏
j=1

θ
λjk−1
jk , (3.16)

where λjk > 0, λ0k :=
∑k

j=1 λjk, and Γ(z) =
∫∞
0 tz−1 e−t dt. Note E[θjk|k] = λjk/λ0k.

The prior variation around this expectation is inversely related to λ0k, which is called the
concentration parameter.

For the chosen prior, λjk = α/k and λ0k = α. Therefore the prior expectation of θjk is
1/k and consequently

E[F (x|θk)|k] =
k∑
j=1

1

k
Fjk(x) = Q(x). (3.17)

In order to encourage sparsity, I set α = 1.

Sampling scheme. Draws from the posterior are made via importance sampling. Let
{φ(r)}Rr=1 represent R draws of φ from its prior. These draws can be made by first drawing
k and w from their priors, next drawing θk from its conditional prior (given the draw of k),
and then setting

φ(r) = AK,k
(r)
(

(1− w(r)) θ
(r)

k(r)

)
. (3.18)

Let

ζ(r) := S(φ(r))−n/2 and Z :=
R∑
r=1

ζ(r). (3.19)

Then

φ ≈ φ̂ :=
1

Z

R∑
r=1

ζ(r) φ(r) and L ≈ L̂ := Z/R. (3.20)

Approximations to other quantities are w ≈ ŵ := 1−
∑K

j=1 φ̂j and θ ≈ θ̂ := φ̂/(1− ŵ).



FITTING A DISTRIBUTION TO SURVEY DATA 7

Computation reduction. We can reduce the amount of computation by not actually making
draws of k and (more importantly) by delaying the elevation of (1 − w) θk. [When viewed
from the perspective of Bayesian Model Averaging (as applied to a collection of models
indexed by k), the organization of the computations described in this subsection is natural.]

Let Rk ≈ p(k)R denote the expected number of draws of k that would be made if k

were drawn from its prior, where
∑K

k=1Rk = R. For each k, make Rk draws of θk from its
conditional prior along with Rk draws of w from its prior and set

φ
(r)
k = (1− w(r)) θ

(r)
k . (3.21)

The relevant draws now consist of {φ(r)k }
Rk
r=1 for k = 1, . . . ,K.

Let

ζ
(r)
k = S(AK,k φ

(r)
k )−n/2. (3.22)

A significant reduction in computation comes from

S(AK,k φ
(r)
k ) ≡ (y −Xk φ

(r)
k )>(y −Xk φ

(r)
k ), (3.23)

where Xk = XAK,k. Since Xk is computed once, Xk φ
(r)
k involves fewer operations than

X (AK,k φ
(r)
k ) as long as k < K.

Next define

Zk :=

Rk∑
r=1

ζ
(r)
k and φ̃k :=

Rk∑
r=1

ζ
(r)
k φ

(r)
k . (3.24)

Then Z =
∑K

k=1 Zk and

φ̂ =
1

Z

K∑
k=1

AK,k φ̃k. (3.25)

The total number of elevations is reduced from R to K.
We can give (3.25) a natural representation:

φ̂ =
K∑
k=1

v̂k (AK,k φ̂k), (3.26)

where v̂k := Zk/Z approximates the posterior probability of k and φ̂k := φ̃k/Zk approx-
imates the posterior conditional expectation φk := E[φk|z1:n, k]. Finally, define ŵk :=

1−
∑k

j=1 φ̂jk for future reference.

Adequacy of fit. The ability of the model to fit a prior depends on both the centering function
Q and the maximum order of the polynomial K. The more closely the centering function is

aligned to the data, the smaller is the required variation around it. In particular, if F (h|θ̂)
fits well, then using it as the centering function should obviate the need for k > 1. Thus an

indication of the adequacy of fit can be obtained by setting Q(h) = F (h|θ̂), estimating the
model with K ′ � 1, and checking the posterior probabilities for k′ = 1, . . . ,K ′.
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Figure 2. φ̂jK for j = 1, . . . ,K = 41.
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Figure 3. Posterior distribution for k.

4. Results

I chose Q(x) by fitting a simple parametric distribution to the survey data: Q(x) = 2−a
∗/x

where

a∗ = argmin
a

n∑
i=1

(
zi − (1− w∗) 2−a/hi

)2
. (4.1)

In particular, a∗ = 3.65 given the chosen value of w∗ = 0.05. Note

q(x) = log(2) a∗ 2−a
∗/x x−2. (4.2)
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Figure 4. Posterior probabilities for the point mass, {ŵk}41k=1 with ŵ =
0.046 indicated.

Figure 5. Row k shows AK,k φ̂k for k = 1, . . . ,K = 41.

I let p(w) = Beta(w|1, 19), which has a mean of 0.05. I chose K = 41 and let p(k) = 1/K for
k = 1, . . . ,K. I set R = 41× 107 for the number of draws from the prior so that Rk = 107.6

The central results are ŵ = 0.046 and φ̂ as shown in Figure 2. The posterior distribution
for k is shown in Figure 3. Posterior probabilities ŵk for the point mass at infinity are shown

in Figure 4 along with the model-averaged ŵ = 0.046. The elevated vectors AK,k φ̂k for

each k are shown row-by-row in Figure 5 and the corresponding weighted vectors vk A
K,k φ̂k

are shown in Figure 6. See Figure 1 for a plot of F (h|φ̂) and Figure 7 for a plot of f(h|θ̂).

6The calculations were done on my MacBook Pro (circa 2014) using Mathematica (with pseudo-compiled
code). The entire calculation, which involved generating close to 1010 gamma variates, took about 11 minutes
using some parallelization.
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Figure 6. Row k shows v̂k A
K,k φ̂k for k = 1, . . . ,K = 41.

Adequacy of the fit. As a check on the adequacy of the fit, I redid the estimation using

F (h|θ̂) as the centering function, constructing the design matrix X̂ ′ via

X̂ ′ij := I
F (hi|θ̂)(j,K

′ − j + 1). (4.3)

I chose K ′ = 21 and R = 21×106. The posterior distribution for k is shown in Figure 8. The

first two probabilities account for more than 99%. I found F (h|φ̂′) to be indistinguishable

from F (h|φ̂). In summary, this check produced no evidence against the adequacy of the fit.

Evidence in favor of w = 0. I ran the model imposing w = 0. The centering function was
refit under the assumption w∗ = 0, producing a∗ = 3.96 [see (4.1)]. The Bayes factor in

favor of this restricted model relative to the unrestricted base model is L̂′/L̂ ≈ 0.5. In other
words, there is very mild evidence in favor of w > 0.

5. First-order autoregressive coefficient

The first-order autoregressive model (for the log of the real exchange rate, mt) can be
expressed as

mt = γ + β mt−1 + εt, (5.1)

where β is the first-order autoregressive coefficient. According to (5.1), the half-life h is
given by βh = 1/2. This expression can be solved for

h(β) :=
− log(2)

log(β)
. (5.2)

Note

h′(β) =
log(2)

β log(β)2
. (5.3)
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Figure 7. PDF for survey fit prior, f(h|θ̂). The mode occurs at h = 3.0
years. The fit delivers Pr[h =∞] = 0.046.
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Figure 8. Posterior probabilities for k = 1, . . . , 21, where Q(h) = F (h|θ̂).

With these expressions, the model in (2.1) can be written in terms of β as follows:

p(β|θk, w) =

{
w β = 1

(1− w) g(β|θk) β ∈ [0, 1)
, (5.4)

where

g(β|θk) := f(h(β)|θk)h′(β). (5.5)
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Figure 9. PDF for fit survey prior expressed in terms of β (with a uniform
distribution for reference). This fit delivers Pr[β = 1] = 0.046.

Consequently, the posterior probability of a unit root is approximated by ŵ = 0.046 and

the posterior density over the unit interval is given by g(β|θ̂) as shown in Figure 9.
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