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finite ordered, mixture priors. Applying our Bayesian nonparametric learning approach to a panel of actively
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1 Introduction

Since the seminal article by Jensen (1968), estimating the skill level of actively managed

mutual funds has been widely researched and debated.1 In addition to estimating the

skill of a fund, others have investigated how skill is distributed across the industry. For

instance, Kosowski et al. (2006), Barras et al. (2010), Fama & French (2010), and Ferson

& Chen (2015) take a frequentist approach and estimate the population distribution by

bootstrapping the estimated skill of the funds. Chen et al. (2017) and Harvey & Liu (2018)

both model the population distribution with a finite mixture of normals and estimate the

mixture parameters with an EM algorithm. Barras et al. (2018) use a nonparametric method

to estimate the population distribution but do not use the information from the population

when estimating a fund’s level of skill.

Jones & Shanken (2005) estimate the population distribution with a Bayesian model and

a parametric hierarchical normal prior for skill. Others, like Pástor & Stambaugh (2002b),

assume a parametric form for the population distribution. Baks et al. (2001), Pástor &

Stambaugh (2002a), and Avramov & Wermers (2006) also assume a known cross-sectional

distribution for skill. Each finds the estimate of a fund’s level of skill to be sensitive to the

choice of the population distribution.

To our knowledge, no one has estimated mutual fund skill by letting the population

distribution be entirely unknown, estimating it, and using it to infer the skill level of the

funds. We do this here by modeling the unknown population distribution with a Bayesian,

nonparametric, hierarchical prior. Our nonparametric prior is an infinite mixture of normals

whose mixture weights, locations, scales, and order are unknown. We infer these unknown

mixture parameters using an unsupervised learning approach where we partition the panel

of mutual funds into a finite number of groups (mixture clusters).2 Each member of a

specific group has the same average stock-picking ability and variability (mixture location

and scale).3

We leverage these random partitions to resolve the uncertainty in the skill level of a

fund belonging to a particular group by pooling the information from the group’s other

funds. Sharing information within the group is especially important when resolving the

uncertainty in the skill level of newer funds whose performance histories are short. Parti-

tioning the funds into different groups also eliminates the global shrinkage issues that plague

1See Elton & Gruber (2013) for a review of this literature.
2See Murphy (2012) for an introduction to unsupervised learning.
3Learning about the cross-sectional distribution of skill by partitioning funds into groups is similar to

Cohen et al.’s (2005) idea of judging a fund by the company it keeps. However, our approach is unsupervised
and, hence, does not use any information about a fund beyond its return history.

2



parametric hierarchical priors, and also finite mixture models, whose number of clusters is

determined by testing nested mixture models. Under our nonparametric hierarchical prior,

an extraordinarily (un)skilled fund is allowed to be the only member of its group and,

hence, not have its estimate of skill shrunk towards the global industry average as in Jones

& Shanken (2005), or towards the average skill of a (below)above-average group of funds as

in Chen et al. (2017) and Harvey & Liu (2018).

Using return data from the entire actively managed, US domestic equity, fund industry,

we find the population distribution of skill to be bi-modal, fat-tailed, and slightly skewed

towards better stock-picking ability. Our estimate of the population distribution of skill

suggests there is a greater chance of a fund being extraordinarily skilled relative to both a

normally distributed population and a Gaussian mixture model with two clusters. We also

find our exceptionally skilled and unskilled funds look rather ordinary when skill is assumed

to be normally distributed across mutual funds.

We organize the paper in the following manner. In Section 2, we present a mutual fund

investor’s investment decision and how he applies Bayes rule to learn about the population

distribution of skill and the skill level of a particular fund. Section 3 presents our nonpara-

metric, hierarchical, Dirichlet process mixture, prior for the skill level of the funds and the

initial population distribution from this nonparametric prior. We then describe in Section

4 the Bayesian unsupervised learning that comes from the Dirichlet process, followed in

Section 5 by the model’s Markov Chain Monte Carlo (MCMC) sampler. In Section 6, we

apply our Bayesian nonparametric approach, a Bayesian parametric hierarchical model, and

a idiosyncratic Bayesian parametric model, to a panel of 5,136 actively managed mutual

funds. Section 7 summarizes our findings and provides our conclusions.

2 Investors decision

In this section, we analyze the population distribution of mutual fund performance from

the perspective of rational Bayesian investors who choose between a risk-free asset, a set of

benchmark assets, and an array of actively managed mutual funds. Our investors’ decision

differs from that in Baks et al. (2001) (BMW) where the decision to invest in a specific

fund is treated independently from the deliberations around investing in the other funds.

Instead, we follow Jones & Shanken (2005) (JS) and assume the investors choose to invest

in a current mutual fund by analyzing the return performance of past and present mutual

funds when determining skill and the population distribution.
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Following Jensen (1968), the risk-free adjusted, gross returns4 for J , past, and present,

mutual funds, are assumed to follow the linear risk factor model

ri,t = αi + β′iFt + σiεi,t, i = 1, . . . , J, and t = τi, . . . , Ti, (1)

where 1 ≤ τi. The length of each series is Ti = Ti − τi + 1 such that Ti and Ti′ do not have

to be equal. As an unbalanced panel, the starting points, τi, do not need to be same for

different is.

We first assume the innovations are homoskedastic, Gaussian white noise, εi,t
iid∼ N(0, 1).

Later, in Section 6.4, we allow for time-varying heteroskedastic sampling distributions by

modeling each fund’s returns with autoregressive conditional heteroskedasticity (ARCH)

variances.

We let each fund have its own stock-picking strategy. Hence, the return innovations

are conditionally uncorrelated across funds such that Cov(εi,t, εi′,t) = 0.5 Under these

assumptions, the sampling distribution representation of Eq. (1) is

f(r1, . . . , rJ |α,β,σ2) =
J∏
i=1

Ti∏
t=τi

N(ri,t|αi + β′iFt, σ
2
i ),

where ri = (ri,τi , . . . , ri,Ti)
′, α = (α1, . . . , αJ)′, β = (β1, . . . , βJ), and σ2 = (σ21, . . . , σ

2
J)′.

The vector of passive benchmark returns, Ft, are observed by our investors at the end

of each month t. Later, in the empirical application, these benchmark returns will consist

of the four passive risk factors; the three-factor model of Fama & French (1993) and the

momentum portfolio factor of Carhart (1997). Under these risk factors, Eq. (1) becomes

ri,t = αi + βi,R · RMRFt + βi,S · SMBt + βi,H ·HMLt + βi,M ·MOMt + σiεi,t, (2)

where RMRFt is the excess market return in the tth month, SMBt and HMLt are the size

and book-to-market factors, and MOMt is the monthly momentum return.

In both Eq. (1) and (2), the parameter αi is assumed to measure fund i’s ability to

identify under-valued stocks and is the only parameter measuring this skill. BMW show

that Bayesian, mean-variance, investors invest in an existing fund if and only if the expected

posterior value of αi is greater than zero and at least as large as the fund’s fees; i.e., the

mutual fund is expected to outperform a cost-less portfolio comprised of the benchmark

4We analyze gross returns because expenses and fees vary across funds and over time, and because the
management company generally sets the fees. For example, in the economic model of fund behavior by
Berk & Green (2004), the model predicts the economic rents generated by a skilled fund will be captured
by management through higher fees.

5JS relax the cross-sectional independence assumption and use a hidden factor model, which improved
the precision but did not affect the location of the skill estimates.
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returns, F , and cover the fund’s fees. According to BMW, Bayesian investors choose to

invest in a new fund if and only if the expected value of alpha over the posterior population

distribution is positive and exceeds the average fee charged by the industry. How much

investors invest in either a new or existing fund depends on the level of uncertainty in the

investment as measured by the standard deviation of the relevant posterior.

In our Bayesian nonparametric approach, an investor’s initial guess about the population

distribution of skill or a particular fund’s level of expertise is represented by the hierarchical

prior π(α|θ) with the hyperparameter θ. Knowledge about the ith fund’s ability, along with

an understanding of the population, increases as we observe the risk-adjusted gross returns

of any actively managed fund. For instance, if we only see the returns for the ith fund, we

directly update our guess about the skill of the ith fund by applying Bayes rule

π(αi|ri, θ) ∝ π(αi|θ)f(ri|αi), (3)

where

f(ri|αi) =

Ti∏
t=τi

N
(
ri,t − β′iFt,

∣∣αi, σ2i ) , (4)

is the likelihood conditional on βi and σ2i .
6

Alternatively, if the returns are from the J − 1 other funds, we update our guess about

the population distribution with the posterior predictive distribution

π(αi|r−i) =

∫
π(αi|θ)dG(θ|r−i), (5)

where αi is the level of skill for the ith fund and r−i are the return histories of the J − 1

funds besides the ith fund. Note that αi can generically represent the skill level of any fund

whose performance history is not found in r−i.

In Eq. (5),

G(θ|r−i) ∝ G(θ)p(r−i|θ), (6)

is the posterior for the hyperparameter where the connection between θ and r−i is made

via p(r−i|θ) =
∫
f(r−i|α−i)π(α−i|θ) dα−i.

The posterior predictive distribution in Eq. (5) has updated our initial guess for the

population distribution, the prior, π(α), to the posterior population distribution, π(α|r−i).
This “updated prior” gets augmented with the additional information observed in the ith

6Note we have suppressed βi and σ2
i from conditioning argument of the likelihood to simplify the notation.
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fund’s likelihood. Now our assessment of the ith fund’s level of skill is found in the fund’s

posterior

π(αi|ri, r−i) ∝ π(αi|r−i)f(ri|αi). (7)

Given the cross-sectional information in Eq. (7) of past and present mutual fund perfor-

mance, the posterior for fund i’s alpha is at least as well informed as π(αi|ri) and better if

ri is short or non-existent.

Thus far we have been learning only about the alphas and θ conditional on the particular

prior distribution π(α, θ) = π(α|θ)G(θ) where the distributions π(α|θ) andG(θ) are assumed

to be known. In the following section, we let our beliefs about the cross-sectional distribution

of skill be completely flexible, in other words, nonparametric, by letting G be unknown. We

then learn about the population distribution of skill by using the information from the panel

of returns to update G, the alphas, and θ. We now show how one learns about the unknown

cross-sectional distribution of skill as one learns about G.7

3 Initial beliefs about the population

We assume the prior beliefs about the distribution of alpha is independent from the risk-

factors and return variance by letting π(αi, βi, σ
2
i ) = π(αi)π(βi, σ

2
i ).

8 We follow Müller

& Rosner (1997) and let the prior for the alphas be the nonparametric, Dirichlet Process

mixture, prior (DPM)

αi|µα,i, σ2α,i ∼ N(µα,i, σ
2
α,i), (8)

µα,i, σ
2
α,i|G ∼ G, (9)

G|G0 ∼ DP (B,G0), (10)

where the hyperprior distribution, G, is unknown and modeled in terms of Ferguson’s (1973)

Dirichlet process, DP (B,G0). The DP arguments are the concentration parameter, B > 0,

and the base distribution G0.
9

7We could apply our nonparametric approach to the population distributions of the betas and sigmas.
However, since our focus is on mutual fund skill we let the priors for βi and σi be ex ante uninformative
priors; i.e., we assume the betas and sigmas are idiosyncratic over the cross-section of funds. Investigating
how to learn about the betas and sigmas would be a worthy research project and would showcase how
straight forward our nonparametric approach is relative to other approaches.

8One could assume investors have a joint prior for (αi, βi, σ
2
i ). However, learning this distribution would

require assigning a fund to a cluster based on all the unknown parameters and not just alpha. Grouping
funds by ability would no longer be the objective, so, we assume a separate prior for the alphas, betas and
sigmas.

9See Kleinman & Ibrahim (1998), Burr & Doss (2005), Ohlssen et al. (2007), Dunson (2010) and Chapter
23 of Gelman et al. (2013) and references therein for the mathematical details of the Dirichlet process.
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The DPM has been used extensively in econometrics to model the unknown distributions

of observable data (Chib & Hamilton 2002, Hirano 2002, Jensen 2004, Jensen & Maheu

2010, Bassetti et al. 2014). A primary reason for this is the DP’s almost sure discrete

representation of the unknown hyperprior distribution

G
as
=

∞∑
k=1

ωk1{µ∗α,k,σ
2∗
α,k}

, (11)

with (µ∗α,k, σ
2∗
α,k)

iid∼ G0, ωk = wk
∏
k′<k(1−wk′), and where wk ∼ Beta(1, B), and 1{µ∗α,k,σ

2∗
α,k}

is a point mass at (µ∗α,k, σ
2∗
α,k). This almost sure discreteness of G leads to the partitioning

of the unknown alphas into groups.

Another important reason for using the DP to model G is its ease of use. As a conjugate

distribution the DP lends itself to the simple, and efficient, sampling algorithm of West et al.

(1994).10 Draws from this sampler are made using conditional posterior distributions that

are known, and the draws quickly converge to realizations from the posterior distribution

of the nonparametric hierarchical prior.

The expectation of DP (B,G0) is E[G] = G0, so the base distribution, G0, represents

our initial guess of G, and indirectly, our initial guess of the population distribution. Since

Var[G] ≡ [G0(1 − G0)]/(1 + B), the concentration parameter B can be thought of as the

inverse variance of G. The larger B is the more confident we are about G0 being the

hyperprior G. In the limit, G→ G0 and ωk → 0 as B →∞.11 In our empirical application

B is unknown and estimated.

One needs to be thoughtful about choosing G0 since it plays an important role in how

open-minded we are about mutual fund skill. For example, if we were certain about the

average skill level and the variance of the population we might choose the base distribution

G0 ≡ 1{m0,s20}(µα, σ
2
α) wherem0 and s20 are set to prespecified values. Given the degenerative

nature of this base distribution, our initial guess for the cross-sectional distribution of the

alphas would be

π̂1{m0,s
2
0}

(α) ≡ EG

[∫
N(α|µα, σ2α)dG(µα, σ

2
α)

]
(12)

=

∫
N(α|µα, σ2α)dG0(µα, σ

2
α) (13)

=

∫
N(α|µα, σ2α)1{m0,s20}(µα, σ

2
α)d(µα, σ

2
α) (14)

10If we were concerned about the computing time involved in re-estimating the nonparametric, posterior,
population distribution as new return data becomes available we could compute in real time the posterior
population distribution using the particle learning, sequential sampler of Carvalho et al. (2010).

11B plays an important role in the creation of clusters as the number of funds grows. We will explain this
when we present the clustering properties of the DP prior.
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= N(α|m0, s
2
0). (15)

For those whose prior is π̂1{m0,s
2
0}

(α), they believe they know the population to be nor-

mally distributed with a mean and variance equal to m0 and s20, respectively. BMW, Pástor

& Stambaugh (2002a), and Pástor & Stambaugh (2002b), either implicitly or explicitly as-

sume such strong prior beliefs about the population. For instance, any empirical study of

mutual fund skill where ordinary least square (OLS) estimates of the alphas are used implic-

itly sets m0 = 0 and 1/s20 = 0. As a result, the prior predictive distribution π̂1{0,∞}(α) ∝ C
says there is no information to be found in the cross-section. Instead, each fund’s level of

skill is idiosyncratic to the fund.

If we are sure about G0 being the unknown hyperprior, G, then B →∞, and we would

only need to learn about µα and σ2α. Suppose we are confident the normal, inverse-gamma,

base distribution is the hyperprior, then

G→ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0, ν0/2), as B →∞,

where m0 and σ2α/κ0 are the mean and variance to the conditional normal distribution

for µα, and ν0/2 and s20ν0/2, are, respectively, the scale and shape of the inverse-gamma

distribution for σ2α.

According to Bernardo & Smith (2000, Appendix A2), such prior beliefs about the

hyperprior are those where the prior predictive distribution is the Student-t distribution

πNIG(α) =

∫
N(α|µα, σ2α)NIG

(
µα, σ

2
α

∣∣m0, σ
2
α/κ0, ν0/2, s

2
0ν0/2

)
d(µα, σ

2
α) (16)

= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (17)

with ν0 degrees of freedom, a mean of m0, and scale
√

[(κ0 + 1)/κ0]ν0s20.

When B →∞ in the DP, we are so sure G is equal to G0, πNIG(α) will be our posterior

predictive distribution. For this value of the concentration parameter value we are so

confident in our initial guess for the population distribution we choose to learn nothing

about skill from the cross-section of fund performance data.

In this paper, we choose to learn everything about the population distribution from

the cross-section of fund returns. To do this our prior knowledge about the hyperprior is

captured by

G0 ≡ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0, ν0/2), (18)

with m0 = 0, κ0 = 0.1, ν0 = 0.01 and s20 = 0.01. The Student-t prior predictive

π̂NIG(α) =

∫
N(α|µα, σ2α)E[dG(µα, σ

2
α)]
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= tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (19)

is then proper, but extremely diffuse.

From the arguments to Eq. (19), our initial beliefs are that the average fund does not

have the skill to beat a passive portfolio (m0 = 0). Furthermore, with ν0 = 0.01 our level

of uncertainty about skill is so high our initial guess for the population variance does not

even exist. We now explain how we learn about G, and hence, learn about the population

distribution π(α).

4 Bayesian nonparametric learning

The next step is learning about the hyperprior distribution, G. Suppose, hypothetically,

that we are able to see a realization of the hyperparameters, (µα,1, σ
2
α,1), from the hyperprior,

G, where µα,1 is the average skill level of a fund and σ2α,1 is the variance in the fund’s skill

level. Being “data” from G, we use (µα,1, σ
2
α,1) to increase our understanding about G with

the updated posterior DP

G|µα,1, σ2α,1 ∼ DP (1 +B,G1), (20)

where the updated base distribution is12

G1 ≡
B

1 +B
G0 +

1

1 +B
1{µα,1,σ2

α,1}. (21)

In Eq. (20), the concentration parameter has increased to 1 + B. As a result, we are

a bit more confident after observing µα,1 and σ2α,1 in the updated base distribution, G1,

representing G. This new estimate of G consists of a mixture of our original guess, G0, and

the information found in the empirical distribution, 1{µα,1,σ2
α,1}.

Given G1, our estimate for the population distribution is now the posterior predictive

distribution

π̂NIG(α|µα,1, σ2α,1) =

∫
N(α|µα, σ2α) dG1(µα, σ

2
α)

=
B

1 +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

1

1 +B
N
(
α|µα,1, σ2α,1

)
. (22)

Equation (22) captures our unsupervised probabilistic approach to learning how skill is

distributed across mutual funds by clustering funds into groups where members all have

the same average level of skill and the same level of variability in their skill. For example,

12See Blackwell & MacQueen (1973).
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1/(1 + B) is the probability that a mutual fund we know nothing about is assigned to

the group whose average level of skill is µα,1 and whose variability is σ2α,1. B/(1 + B) is

probability this same fund gets assigned to a new group whose average skill and variance is

different from µα,1 and σ2α,1. Assigning funds into new groups provides us with the flexibility

to continue to increase the number of mixture clusters as the number of mutual funds in

our panel grows; i.e., the DP has an infinite number of mixture clusters available for new

funds to be assigned to.

We continue to apply this unsupervised probabilistic approach to assigning funds as we

hypothetically observe realizations from G for the J mutual funds. After “seeing” µα,i and

σ2α,i, i = 1, . . . , J , the posterior DP for G is

G|µα,1, σ2α,1, . . . , µα,J , σ2α,J ∼ DP (J +B,GJ), (23)

where

GJ ≡
B

J +B
G0 +

K∑
k=1

nk
J +B

1{µ∗α,k,σ
2∗
α,k}

, (24)

is our guess for G.

In Eq. (24), the updated base distribution, GJ , shows how our Bayesian nonparametric

method of learning has uncovered K ≤ J groups each with its own unique mean, µ∗α,k,

and variance, σ2∗α,k, k = 1, . . . ,K. The kth group contain nk funds and so it follows that∑K
k=1 nk = J .

The concentration parameter in Eq. (23) has increased to J+B, so our confidence in the

guess for G has grown as has our confidence in the estimate for the population distribution

π̂NIG(α|µα,1, σ2α,1, . . . , µα,J , σ2α,J) =
B

J +B
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
+

K∑
k=1

nk
J +B

N(α|µ∗α,k, σ2∗α,k). (25)

According to Eq. (25), when we know nothing about a fund, the probability of assigning

the fund to one of the K groups depends on the group’s size nk. In our mind, larger

groups have a greater chance of having a new fund assigned to it. However, the number of

groups also depends on how confident we are in our initial guess G0; i.e., the concentration

parameter B. The larger B is the more groups we will partition the cross-section of mutual

funds in to.

We are thus learning about the population distribution of mutual fund skill by assuming

very little about the cross-sectional distribution of skill, but then learning about it by flexibly
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forming a mixture of normals where the number of clusters are identified by partitioning

the funds into groups having the same average skill level and variability in skill. Because

our approach is based on unsupervised learning, it allows the number of groups to grow

with the size of the cross-section, introduces new groups when a new extraordinarily skilled

or unskilled fund opens for business, and includes such extraordinary occurrences in the

probability of future mutual fund performances.

4.1 Finite mixture approach

In contrast to our Bayesian nonparametric learning approach, the frequentist approaches

of Harvey & Liu (2018) and Chen et al. (2017) require pre-specifying the number of mix-

ture clusters, K. To determine the number of clusters, they estimate and test a K-ordered

mixture model against the alternative (K + 1)-ordered mixture model.13 There are draw-

backs to the frequentist approach. First, it requires incrementally estimating and testing a

number of different ordered mixture models. This takes time and increases the complexity.

For instance, our estimate of the yearly evolution of the population distribution of skill in

Section 6.6 would be very tedious with the finite mixture approach.

Second, even if the correct number of clusters is chosen, predictions with finite-ordered

mixture models are less flexible. Confining the mixture to a finite number of clusters lacks

the DP’s infinite number of clusters that are available when a new fund’s skill level does

not align with one of the existing group’s average level of skill.

Lastly, frequentist tests for the correct number of clusters require the null and alternative

mixture models to be nested. This is the reason a K-ordered mixture model is tested

against a (K+1)-ordered alternative. Because of this nesting, the frequentist’s finite-ordered

mixture approach does not generalize to the estimation of the population distributions of two

or more parameters. For instance, one cannot extend the frequentist approach to estimating

the population distribution of one of the risk factor parameters, βi, while simultaneously

modeling the population distribution of the alphas. Whereas our nonparametric DPM prior

can be applied separately to as many of the parameters as one desires. Given the limitations

of the finite mixture approach, we strongly argue in favor of applying our nonparametric

DPM prior to the estimation and prediction of mutual fund skill.

13Kasahara & Shimotsu (2015) propose a likelihood-ratio test for determining the number of clusters in
a finite-ordered Gaussian mixture regression model of observable data. Because the alphas are latent, their
test is not applicable here. As a result, Harvey & Liu (2018) have to simulate the critical values for the test.
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5 Inference

To resolve the uncertainty around the alphas, betas, and unknown mixture parameters,

we combine fund-level return data with our initial beliefs to form a joint posterior for the

unknowns. However, the joint posterior distribution for these unknowns is very complex

and does not have a known analytical distribution. Analysis of the complex joint posteriors

requires judiciously breaking it up into its conditional posteriors and using a Markov Chain

Monte Carlo sampler to make joint posterior draws by sequentially sampling from the

conditional posteriors.

The conditionals we sample from are structured by the hierarchical form of our non-

parametric model. Let s = (s1, . . . , sJ) be a J length vector containing all the fund’s group

assignments si, where si = k when (µα,i, σ
2
α,i) = (µ∗α,k, σ

2∗
α,k). The sequence of conditional

posterior distributions are sampled by:

1. Drawing βi and σ2i conditional on ri and αi for i = 1, . . . , J .

2. Drawing αi conditional on ri, βi, σ
2
i and (µ∗α,si , σ

2∗
α,si) for i = 1, . . . , J .

3. Drawing s, K, and (µ∗α,k, σ
2∗
α,k), k = 1, . . . ,K, conditional on α1, . . . , αJ .

4. Drawing B conditional on K.

In Step 1, our prior knowledge for the factor loading vector, βi, and the return variance,

σ2i , is represented by the Jeffreys prior

π(βi, σ
2
i ) ∝ 1/σ2i . (26)

Under this prior, the conditional posterior for βi in Step 1 depends only on the return-

based information, ri. The conditional p(βi|ri, αi, σ2i ) is a normally distributed conditional

posterior with mean and covariance equal to the least squares regression estimator of the

dependent variable, rit−αi, projected onto the explanatory variables Fit, t = τi, . . . , Ti. The

marginal conditional posterior distribution p(σ2i |ri, αi, βi) is a inverse-gamma distribution

with scale, Ti− 4, and shape equal to the sum of squared errors from the above linear least

squares regression divided by the scale Ti − 4.

In Step 2, the prior for αi is the cross-sectional distribution of skill for the sith group

αi|µ∗α,si , σ
2∗
α,si ∼ N(µ∗α,si , σ

∗2
α,si).

Combining this cross-sectional information with the likelihood from the ith fund’s return

history, ri, the conditional posterior in Step 2 is

αi|ri, βi, σ2i , µ∗α,si , σ
2∗
α,si ∼ N(ai, bi), (27)
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where the posterior mean is

ai =

(
µ∗α,si
σ2∗α,si

+

Ti∑
t=τi

r∗i,t

)/(
1

σ2∗α,si
+ Ti

)
, (28)

with

r∗i,t ≡ (ri,t − β′iFi,t)/σi, (29)

being the risk adjusted return, and the posterior variance is

bi = (1/σ2∗α,si + Ti)−1. (30)

In Step 3, we can think of the sampler answering the question asked by JS and adapted

to our case – when would investors discard the information found in the average skill and

variability of the K sub-populations, µ∗α,k, and σ∗α,k, k = 1, . . . ,K? Answering this question

for each fund amounts to drawing the assignment vector s by sequentially drawing each

fund’s si according to the probabilities

P (si = k) =
n
(−i)
k

B + J − 1
fN (αi|µ∗α,k, σ∗2α,k), k = 1, . . . ,K(−i), (31)

P
(
si = K(−i) + 1

)
=

B

B + J − 1
ft

(
αi

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)
, (32)

where n
(−i)
k is the number of funds belonging to the kth group after the ith fund has been

removed from the sample, and K(−i) is the number of groups. K(−i) equals K− 1 if the ith

funds is the only member of its group. Otherwise, K(−i) equals K.

Equation (32) is the probability the ith fund is uniquely skilled with a mean alpha and

variance different from all the other funds. This probability is a function of the concentration

parameter, B, and the value of the prior predictive distribution evaluated at the draw of

αi. If si were assigned K(−i) + 1 a new cluster would be created along with a unique mean

and variance such that (µ∗
α,K(−i)+1

, σ∗2
α,K(−i)+1

) = (µα,si , σ
2
α,si).

From sweep to sweep of the sampler, the elements of the assignment vector, s, experience

label switching (Richardson & Green 1997, Frühwirth-Schnatter 2006, Geweke 2007). Unless

more structure is added to the means and variances, (µ∗α,k, σ
∗2
α,k), k = 1, . . . ,K, such as

strictly ordering the mixture means, k can be the label of the low skilled group of funds for

one sweep and, in the next sweep, be the label for the high skilled group. Because of label

switching we are unable to estimate which group each fund belongs to.14

14Malsiner-Walli et al. (2017) identify cluster assignment within a finite mixture model by employing an
informative prior based on assumed shapes present in the data. As far as we know this approach has not
been applied to latent data such as skill since the assumed shapes in the latent data are not known a priori.
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After we assign si for every fund, and by doing so determining the total number

of mixture clusters, K, we pool together the alphas from those funds belonging to the

same group and form our posterior beliefs about the average skill level and variability

by drawing µ∗α,k and σ2∗α,k for each group k = 1, . . . ,K. Given the DP base distribution,

G0 ≡ NIG(m0, σ
2
α/κ0, ν0/2, s

2
0ν0/2), from Section 3, draws of σ2∗α,k are made from

σ2∗α,k|{αi}i:si=k ∼ NIG

(
ν0 + nk

2
,

1

2

ν0s20 +
∑
i:si=k

(αi − αk)2 +
nkκ0
κ0 + nk

(m0 − αk)2
 , (33)

where αk = n−1k
∑

i:si=k
αi. Draws of µ∗α,k are then sampled from

µ∗α,k|{αi}i:si=k, σ
2∗
α,k ∼ N

(
κ0m0 + nkαk
κ0 + nk

,
σ2∗k

κ0 + nk

)
. (34)

Lastly, in Step 4 we draw the concentration parameter B from π(B|K) using the sampler

described in Appendix A.5 of Escobar & West (1995).

Later in the empirical application, we initialize our sampler by setting all the funds’ al-

phas equal to zero. The concentration parameter, B, is initialized with a random draw from

its prior, π(B) ≡ Gamma(2.0, 30.0). This draw of B, along with the normal, inverse-gamma,

base distribution, G0, in Eq. (18), are used to initialize s, K, and {µ∗α,k, σ2∗α,k}k=1,...,K , by

making J random draws from DP (B,G0). Given these initial values we then begin to

iterate over the sampler by using Step 1 to draw the βis and σ2i s.

After a burn-in of the sampler where the draws from the conditional posteriors are

thrown away to allow the sampler to converge to the posterior distribution, subsequent

draws are kept and treated as random realizations from the joint posterior distribution.

This randomness in the sampled alphas represents our beliefs about the skill level for each

of the funds. We choose to iterate the sampler 40,000 times keeping the last 30,000 draws

of the unknowns to infer all the posteriors.

5.1 Flexibility

We point out that the conditional posterior distribution draw of αi in Eq. (27) does not

depend on the performance history of the other funds. In other words, our sampler’s draw

of each fund’s alpha is independent of the other funds. However, the skill level of the other

funds does influence our guess for αi through the sith group’s average level of skill, µ∗α,si ,

and variance, σ∗α,si .

14



Cluster information is especially important for a fund with a short performance history,

in other words, when Ti is small, or when a fund’s performance history is noisy such that

σ2i is large. Traditional measures of alpha for funds with limited histories are noisy and

uncertain (Kothari & Warner 2001). But from Eq. (28), we see that average conditional

draw of αi is also determined by the average skill of the sith group, µ∗α,si . Hence, our

nonparametric estimator of a fund’s alpha will depend more on the average performance of

a fund’s group, and less on the fund’s own performance history, when the fund has a noisy

or short performance history.15

The conditional mean of alpha in Eq. (28) also shows how our Bayesian nonparametric

learning approach uses the cross-sectional information differently from JS. In JS there is

but one cluster (K = 1); i.e., all the funds belong to the same group whose average is

the industry-wide average, µ∗α, with variability, σ2∗α . While insightful in their use of cross-

sectional information, we will see in Section 6 that by not allowing for an unknown number

of clusters the parametric approach of JS under-predict the alphas of skilled funds and over-

predict the alphas of unskilled funds. Over and under-prediction of skill occurs because the

JS estimate for αi shrinks towards the average ability of the entire population.16 Such bias

is also prone to exist in pre-specified, finite ordered, mixture models.

In terms of our Bayesian nonparametric approach, shrinkage towards the population

average by JS is equivalent to the econometrician thinking there is only one group among

the mutual funds. One group will be found if the concentration parameter of the DP

prior is B = 0. When B = 0, the mixture weight, ω1 = 1, in Eq. (11)’s almost sure,

discrete representation of G. Hence, the base distribution, G1, in the updated DP of

Eq. (20), consists of only one cluster, (µ∗α, σ
2∗
α ) = (µα,1, σ

2
α,1), where (µα,1, σ

2
α,1) ∼ G0. Each

(µα,i, σ
2
α,i), i = 2, . . . , J , is a realization from the degenerative base distribution 1{µα,1,σ2

α,1},

so that the posterior base distribution for G|µα,1, σ2α,1, . . . , µα,J , σ2α,J is

GJ =
J

J +B
1{µ∗α,σ2∗

α }.

Step 1 & 2 of our sampler remain the same, but Step 3 now only involves drawing σ2∗α and

µ∗α from Eq. (33) and (34), respectively.17

At the other extreme is when B →∞. According to the updated base distribution GJ

in Eq. (24), when B → ∞ every fund’s hyperparameter (µα,i, σ
2
α,i), i = 1, . . . , J , is seen

15This feature of our Bayesian nonparametric approach would be very helpful measuring the skill level of
self-reporting hedge funds where there is no regulation requiring them to report their performance.

16It is well known that the normal hierarchical prior can lead to poor estimates of the population distri-
bution and the unknown parameter (Verbeke & Lesaffre 1996).

17This is equivalent to the sampler found in JS.
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as a new independent draw from the base distribution, G0. Since each realization of the

hyperparameter is idiosyncratic, fund’s are not partitioned into groups, so we learn nothing

about the value of the hyperparameters from other fund’s in the group. Instead, we would

ignore what we learn about the skill of a fund when looking at other funds. Step 2 of our

sampler would then consist of J independent draws of the alphas where the priors are the

idiosyncratic prior distributions, N(µα,i, σ
2
α,i), i = 1, . . . , J .

Equation (27)–(30) also shows how our guess of an extraordinary fund’s alpha is no

different from the opinion of an econometrician who chooses to treat such highly skilled funds

idiosyncratically. With our Bayesian nonparametric learning approach, highly skilled funds

have few peers, and, hence, likely belong to small groups. In the extreme, a highly skilled

fund is so talented it has no peers; i.e., nsi = 1 and σ∗α,si is infinite. In this hypothetical

situation, our Bayesian nonparametric approach does not borrow information from the

cross-section when learning about the fund’s alpha. Instead, each extraordinary fund is

treated separately from the other funds, and, according to Eq. (28), draws of the highly

skilled fund’s conditional posterior alpha come from a normal distribution whose first and

second moments are those of an OLS estimator of alpha. We will see evidence of this in

the empirical investigation of Section 6.7 and the similarity between our nonparametric

estimate of a highly skilled fund’s alpha and the least squares estimate of its alpha.

5.2 Posterior cross-sectional distribution

In Eq. (25), our best guess for the cross-sectional distribution of the alphas depends on

having hypothetically observed the means and variances of the clusters. After observing

the return histories from a cross-section of funds, we can account for the uncertainty in

these unknown mixture means and variances by Rao-Blackwellizing the conditional posterior

predictive distribution over the M posterior draws of the unknown parameters

π̂DPM (α|r1, . . . , rJ) ≈ M−1
M∑
l=1

[
B(l)

J +B(l)
tν0

(
α

∣∣∣∣m0,

(
κ0 + 1

κ0

)
ν0s

2
0

)

+
K(l)∑
k=1

n
(l)
k

J +B(l)
N
(
α
∣∣∣µ∗(l)α,k , σ

2∗(l)
α,k

) , (35)

where (µ
∗(l)
α,k , σ

∗2(l)
α,k ), k = 1, . . . ,K(l), l = 1, . . . ,M , is the lth sweep’s draw from the condi-

tional posterior distribution in Step 3, and n
(l)
k comes from the information found in s(l).

Lastly, B(l) is the lth draw from Step 4 of the sampler. This posterior predictive distribution

for the alphas takes into consideration all the uncertainty about the unknowns, including the

unknown hyperprior distribution, G, by averaging over the posteriors of all the unknowns.
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6 Empirical investigation

Our empirical application consists of applying our Bayesian nonparametric learning ap-

proach to the estimation of the alphas of the actively managed mutual funds found in the

data set of Jones & Shanken (2005).18 This data set is comprised of the monthly gross re-

turns over the period from January 1961 to June 2001. It consists of a unbalanced panel of

396,820 monthly observations from 5,136 domestic equity funds.19 Like Baks et al. (2001),

Jones & Shanken (2005), and Cohen et al. (2005), we are interested in before cost perfor-

mance unaffected by the dynamics of the funds’ fee schedules so fees and expenses have

been added back into the net returns reported in CRSP Mutual Funds data files. Each

fund has at least a years worth of return data and the funds have on average 77.3 monthly

returns. We include all actively managed, domestic, equity funds in our panel, even the

1,292 funds that were no longer open for business at the end of the sample in order to avoid

any survivorship bias.

6.1 Sampler convergence

As mentioned earlier, we throw away the first 10,000 draws of the alphas, αi, risk-factor

vectors, βi, and nonparametric mixture parameters, before keeping the subsequent 30,000

draws for posterior inference. To determine if our MCMC sampler has converged to the

unknown posterior distributions, we compute Geweke’s (1992) z-score convergence diagnos-

tic statistic for the posterior draws of each fund’s alpha. For the 5,136 funds’ alphas, the

average z-score is 0.0275, with 4,419 of the fund’s z-scores being less than two in absolute

value. Such z-score values are evidence that our draws of the individual fund’s alpha have

converged to a sample from their posterior distribution.

We also compute Geweke’s (1992) numerical measure of correlation to gauge the degree

of independence between each draw of the alphas. Using this measure of sampling efficiency,

we find that the draws of the alphas are nearly independent, with efficiency levels exceed-

ing 100 and, on average, equaling 3,123. Thus, our sample of the alphas represents near

independent realizations from the posterior distributions of skill.

To test if the posterior predictive distribution of alpha in Eq. (35) has converged after

a burn-in of 10,000 draws, we compare it to one computed after a burn-in of 100,000

draws. From this test, we find the two posterior predictive distribution’s densities to be

nearly indistinguishable. Both posterior predictive densities of alpha have exactly the same

18We would like to thank Chris Jones for graciously providing us with their data.
19Funds were eliminated that made substantial investments in other asset classes.
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properties seen in the DPM plot of Figure 1.20 Hence, after a burn-in of 10,000 draws our

MCMC sampler has converged to the unknown posterior population distribution.

6.2 Posterior number of clusters

For our Bayesian nonparametric approach where the population distribution of the alphas

are modeled with the nonparametric hierarchical prior of Eq. (8)–(10), we find the posterior

median number of clusters, K, to equal four, with a minimum posterior draw of three and a

maximum of six clusters. The 95% highest posterior probability density (HPD) interval for

K is three to five clusters. Hence, the 5,136 funds are randomly partitioned over a handful

of the infinite possible mixture clusters.

The posterior mean for the concentration parameter, B, is 0.1245, with a 95% HPD

interval of (0.004, 0.261). A concentration parameter this close to zero supports our earlier

claims of mutual fund skill not being idiosyncratic to a fund, nor being normally distributed

over the population. Instead, the population distribution of skill is represented by a mixture

over a small number of normal distributions. It is important then to have flexible posterior

beliefs about the cross-sectional distribution of mutual fund performance in order to learn

about the skill level of a particular fund.

6.3 Cross-sectional distribution

In Figure 1, the red line is the density for the posterior cross-sectional distribution of alpha

where we learn how skill is distributed over mutual funds by computing π̂DPM (α|r1, . . . , rJ)

with Eq. (35). The blue density line is the posterior cross-sectional distribution where skill

is normally distributed, with its unknown mean, µα, and variance, σ2α, modeled with the

uninformative Jeffreys prior, π(µα, σ
2
α) ∝ 1/σ2α. The uncertainty around the mean and

variance is integrated out of the normal population distribution with

π̂JS(α|r1, . . . , rJ) ≈M−1
M∑
l=1

N
(
α
∣∣∣µ(l)α , σ2(l)α

)
,

where the (µ(l), σ2(l)) are draws from π(µα, σ
2
α|r1, . . . , rJ).

The green density in Figure 1 is the density of the empirical distribution for the fund-by-

fund OLS estimates of the alphas. It is estimated with the posterior predictive distribution

of the DPM applied directly to the 5,123 OLS alphas, α̂i.
21

20Plots of the two posterior predictive densities are available upon request from the authors.
21Please note that the OLS alphas are idiosyncratic to the fund and, hence, the actual population distri-

bution under the OLS estimator is a uniform distribution over the entire real line. As a result, the green
density in Figure 1 is a smoothed “histogram” of the OLS alphas and is not an actual estimate of the
population distribution.
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Figure 1: Posterior population distribution of alpha for the JS type investors,
π̂JS(α|r1, . . . , rJ), who believe the underlying population distribution is normal but with
unknown mean and variance (blue line), the posterior population distribution for our in-
vestors, π̂DPM (α|r1, . . . , rJ), who do not assume a particular distribution for alpha but have
placed a DPM prior on the unknown distribution of alpha (red line), and the empirical dis-
tribution of the fund-by-fund OLS estimates of the alphas estimated by applying the DPM
to the OLS alphas (green).
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Very different conclusions about the cross-sectional performance of mutual funds are

drawn from the estimated population densities in Figure 1. Our Bayesian nonparametric

estimator of the population distribution finds two modes and a flat density section around

6%. In contrast, the JS population distribution by definition has only one mode. The

primary mode for the nonparametric population distribution is 1.8% and the JS mode is

1.5%. Such values for alpha just offset the fees charged by the average mutual fund.22 An

investor who applied the JS approach, thus, believes that, on average, a fund, they know

nothing about, will just break even. Whereas with our Bayesian nonparametric approach

we find that there is a seventy-three percent chance the unknown fund will have an alpha

between 0.4% and 4.0%.

The secondary mode of the nonparametric population distribution in Figure 1 is located

at −0.65%. This negative mode suggests there are actively managed funds whose average

stock-picking ability is detrimental to what an investor could earn on a passively managed

fund.23 Given the information from this second mode, we find that there is a 22% chance

that a fund, for which we have no information about, would produce an alpha between −5%

to 0.4% a year.

The flat section of the nonparametric population distribution at 6% is a diffuse, low

probability, area of the predictive density. Such probability is only possible with a normal

mixture model with more than three clusters. There is a 3% chance a fund we know nothing

about will have the skill level to produce an alpha of four to ten percent. On the other

hand, such a fund has less than a half a percent chance of its alpha being between −4% and

−10%. Hence, it is more likely we will find a highly skilled fund than an unskilled fund.

The empirical distribution of the OLS alphas in Figure 1 identifies the average skill

level of the population, but it fails to uncover the bi-modality, skewness, or tightness of

the population distribution. The inability of the empirical distribution to find important

characteristic of the population distribution can be understood in terms of signal-noise

extraction where the signal is the population distribution, π(α). Conditional on knowing

the variances and betas of the funds, the OLS estimate’s predictive distribution can be

22Chen & Pennacchi (2009) report the average mutual fund’s expense fee is 1.14 percent, whereas Berk
& Green (2004) choose a slightly higher management fee of 1.5 percent to account for costs not included
in the fee when parameterizing their mutual fund model. We perform our analysis with the larger fee of
1.5 percent to compensate for missing trading costs. Wermers (2011) from ICI estimates actively managed
mandates expenses and transactions costs of mutual funds and hedge funds amount to at least two percent
a year.

23Theoretically, rational investors would pull their money from under-performing funds, causing them to
go out of business. Negative alphas leave open the door that some investors act irrationally (Gruber 1996),
or that investors tolerate short term poor performance.
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written as

π(α̂|α) = N(α̂|α, σ2),

where σ2 is the level of noise in the OLS estimates of the alphas.24 Assuming we know the

cross-sectional distribution of skill, π(α), the marginal distribution of the OLS alphas is the

weighted average

π(α̂) =

∫
π(α̂|α)π(α)dα.

Hence, the empirical distribution of the OLS alphas, π(α̂), is a “blurred” version of the

population distribution, π(α). If the noise in the OLS alphas, σ2, were smaller, π(α̂) would

be closer to π(α). However, many funds have noisy or short performance histories, so the

empirical distribution smears skilled and unskilled funds into a unimodal population.

In Table 1, we list the percentiles, standard deviation, skewness, and kurtosis of the

parametric, and nonparametric, posterior cross-sectional distributions. Medians of both

distributions are close to the average fee of 1.5% a year. At first glance, these medians

support the theoretical findings of Berk & Green (2004) where, in the long run, successful

funds break-even with an alpha that matches their fees. However, we have also uncovered

multiple modes along with a skewness towards highly skilled funds. These characteristics

are only possible when the Gaussian mixture model has four or more mixture clusters.

One explanation for having multiple modes is that funds whose alpha is close to 6%

are newer funds with fewer assets under management and have not yet experienced the

diminishing returns to scale assumed in the model of Berk & Green (2004). As these young

skilled funds attract assets, grow, and mature, we expect that their alphas will move towards

the population median; i.e., towards the break-even alpha.

Percentiles
0.01 0.05 0.1 0.5 0.9 0.95 0.99 SD Skew Kurtosis

DPM −2.90 −1.40 −0.83 1.43 2.46 3.19 11.48 2.36 4.31 101.49
JS −2.19 −1.15 −0.60 1.34 3.28 3.83 4.87 1.51 −0.0002 3.02

Table 1: Posterior cross-sectional percentiles, standard deviation (SD), skewness, and kur-
tosis for when the underlying distribution of skill is believed to be normally distributed (JS)
and the nonparametric, hierarchical, prior (DPM).

According to the percentiles in Table 1, the probability of a new, or unknown fund, being

extraordinarily skilled is higher than previously thought since the nonparametric popula-

tion distribution’s 99th-percentile is an alpha of 11.48%, and the 99th-percentile for the

24In the case where we do not condition on the return variances and betas a Student-t distribution would
replace the Gaussian.
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parametric distribution is only 4.87%. Our flexible, nonparametric, population distribution

is also more fat-tailed, with a kurtosis of 101.49, and more skewed towards finding skill

in the industry with a skewness of 4.31 than the parametric population distribution. Our

nonparametric population distribution also has a slightly more negative 1%-percentile of

−2.90% compared to −2.19% for the parametric distribution. So, compared to the para-

metric population distribution, our nonparametric approach finds that there is a greater

chance a fund will be either extraordinarily skilled or unskilled.

A similar tail relationship also exists between our nonparametric population distribution

and a finite ordered mixture model. Given the bi-modality of our nonparametric posterior

predictive distribution, one might expect a finite ordered mixture model with two Gaussians

fits the population best. In fact, after testing several orders of Gaussian mixture models,

Harvey & Liu (2018) concluded a mixture of two produced the best model of mutual fund

skill.

A two-cluster, Gaussian, mixture model, however, suffers shrinkage just like the normal

model of JS. All the extraordinary skilled funds get shrunk back towards the average alpha

of the skilled group, while all the extremely unskilled funds get pulled up to the average

alpha of the lower skilled group. As a result, Harvey & Liu (2018) find fewer exceptionally

skilled and unskilled funds relative to our nonparametric approach. Only with more mixture

components will Harvey & Liu’s (2018) finite-ordered mixture model accurately capture the

tail behavior of the population and unveil the highly skilled funds of the industry.

6.4 Robustness to ARCH

A well known empirical regularity of daily market and corporate equity returns is their

time series dynamics of time-varying variance. One might think that a skilled fund man-

ager would select stocks that help minimize this time-varying variance in their portfolio.

However, to our knowledge time-varying variance in the monthly performance histories of

actively managed mutual funds has not been documented.

To investigate how robust our nonparametric estimates of the population distribution

and the alphas for each of the funds are to time-varying variance, and to see if the risk level

in a fund’s portfolios is time-varying, we relax the homoskedasticity condition assumed

in the sampling distribution of Eq. (1). We now allow the sampling distribution to have

time-varying variances in the form of autoregressive conditional heteroskedasticity (ARCH)

σ2i,t = γi,0 + γi,1ε
2
i,t−1, (36)

where σ2i,t is guaranteed to be positive by restricting γ0 > 0 and 0 < γ1 < 1.
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Since the variance is a function of εi,t−1 = ri,t−1−αi−β′iFt−1, the posterior Gibbs draws

of αi and βi found in Steps 1 & 2 of our sampler are no longer valid. In place of these Gibbs

draws, we substitute independent, random-walk, Metropolis draws of αi and βi where the

step-sizes to the normal candidate distributions are set equal to the standard deviations

from the OLS estimate of Eq. (1).

Random-walk Metropolis draws are also made for the conditional posterior draws of γi,0

and γi,1. Normally distributed candidate draws are made for the two ARCH parameters

using the standard deviations from the linear regression of the OLS variances on lagged

squared residuals as the step-size. Since Step 3 & 4 of our sampler conditions on a particular

sweep’s draw of the alphas, we continue to use these steps to draw the DPM parameters.

To improve the Metropolis acceptance rates, we keep the draw from every twentieth

sweep from a total of 200,000 draws after an initial burn-in of 30,000 sweeps. For all 5,136

funds the Metropolis acceptance rates for the alphas, betas, and gammas, are all 100%. The

posteriors distributions for the ARCH coefficients, γ1,i, are heavily concentrated near zero,

and are on average 0.4. Still there are a few funds whose ARCH parameters are distributed

close to one.25

In Figure 2, we plot the log of the nonparametric posterior predictive distribution of

the alphas from Figure 1 and the posterior predictive distribution when the sampling dis-

tributions have ARCH variances. One can see that both the left and right hand tails of

the predictive distribution are not as fat under ARCH as they were when the variances

were homoskedastic. Hence, under ARCH the population of funds is not expected to be as

extraordinarily skilled or unskilled as before.

Bi-modality is still a prominent feature of the population distribution under ARCH.

Investors would still expect a fund they know nothing about to likely have enough skill to

break even, but with a non-negligible possibility the fund would lose money.

When we regress the posterior means of the alphas from the ARCH version of the model,

ᾱARCH,i, on our original estimates of the alphas, ᾱi, we find

ᾱARCH,i = 0.1322 + 0.7865 ᾱi.

The two estimates of the alphas are also highly correlated at 0.91. In general, each fund’s

posterior mean of alpha is slightly closer to zero under ARCH innovations. Our nonparamet-

ric estimates of skill are thus robust to the presence of ARCH in the sampling distribution

25Plots of the posterior densities for the γ1,is are available from the authors upon request. We should
point out that if testing for ARCH were the focus of this paper then the correct way to do this would be to
apply the nonparametric learning approach of this paper to the population distribution of the γ1,is and use
this cross-sectional information in the estimation of the specific ARCH parameters.
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of the performance histories.

6.5 Robustness to the base distribution

To test the robustness of our nonparametric approach to the choice of G0, or, in other

words, to the prior predictive, π̂NIG(α), we estimate the population distribution using a

larger scale parameter, ν0, for the normal, inverse-gamma base distribution. Since ν0 is

the degrees of freedom of the prior predictive, increasing ν0 leads to a more informed prior

predictive distribution. For ν0 ≤ 0.6, the posterior cross-sectional distributions of alpha are

no different from the nonparametric population distribution plotted in Figure 1. However,

when ν0 ≥ 0.7 the posterior population distributions are no longer multi-modal, instead,

they are uni-modal with a mode near 1.4%. Hence, the nonparametric distribution has

fewer clusters as the degrees of freedom of its prior predictive distribution increases.

When ν0 = 0.7, the skewness of the nonparametric population distribution increases to

5.02 from the original 4.31. So when the secondary mode at the large value of alpha is not

identified, we find skill to be more probable. We also find the population distribution is

more fat-tailed than before with a kurtosis of 110. Hence, under the Bayesian nonparametric

estimator of the population distribution, there is a greater chance of a fund, for which we

have no information about, being highly skilled, regardless of the value of ν0.

We can use the inter-quartile range of the prior predictive distribution to help explain

how the choice of ν0 affects the number of modes of the population. The inter-quartile

range for π̂NIG(α) goes from a very diffuse, 10126, when ν0 = 0.01, to a relatively tight

0.18 when ν0 = 0.6. The tighter range of the prior predictive limits us from learning about

the different skilled groups. Instead, a wider spectrum of stock picking ability gets blurred

together into larger groups.

An alternative class to the normal, inverse-gamma, base distribution is the flexible, but

non-conjugate, normal-SM, base distribution

G0(µα, σα) ≡ N
(
µα|0, s2µ

)
SM

(
σα

∣∣∣1/2, 2, A/√3
)
, (37)

where SM
(
σα
∣∣1/2, 2, A/√3

)
is the base distribution for the standard deviations of the

mixture.

The SM distribution is defined in Singh & Maddala (1976) and has the density function

fSM

(
σα

∣∣∣1/2, 2, A/√3
)

=
3Aσα

(A2 + 3σ2α)3/2
. (38)

The SM distribution is appealing since it allows for more weight than the inverse-gamma

distribution does for σαs close to zero. The independence between µα and σα in Eq. (37)
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Figure 2: Log transformation of the posterior population distribution of alpha for the
Bayesian nonparametric investors, ln π̂DPM (α|r1, . . . , rJ), under homoskedastic returns
(black), and autoregressive conditional heteroskedastic returns (gray).
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also proves advantageous since it allows the mixture location to move separately from the

mixture scales. We set s2µ = 2 and A = 25, and, because the SM is not conjugate, apply

Algorithm 8 of Neal (2000) to make the draws in Step 3 of our sampler.

Under the normal-SM base distribution, we again find the population distribution of skill

to be multi-modal with modes located near those of the nonparametric density in Figure

1.26 The posterior draws of K range from four to fourteen clusters with a median of six

clusters. Hence, the number of mixture clusters is marginally larger under the normal-SM

base distribution than the normal, inverse-gamma.

The posterior mean of the concentration parameter, B, is also slightly larger under the

normal-SM base distribution at 0.59 compared to the normal, inverse-gamma’s 0.125. Both

of these posterior estimates of B, along with K, support our earlier conclusion that the

population distribution of skill is neither normally distributed, nor is skill idiosyncratic to a

fund. Instead, the population distribution of skill requires the flexibility that our Bayesian

nonparametric approach provides.

6.6 Evolution of the population

Beginning in 1993, the number of new mutual funds entering the actively managed fund

industry accelerated. Following 1993 more than 300 mutual funds opened each year. Entry

peaked in 1998 with 659 funds opening up for business. This history of funds opening for

business allows us to analyze how the population of skill evolved over this time period and

also investigate if these new funds were more skilled than the old ones.27

Starting in 1981, we move forward in one-year increments up to the year 2000 and

iteratively re-estimate the cross-sectional distribution of alpha using the return histories of

all the funds to have ever existed up to the specified year.28 We find that there are four

episodes or eras for the population distribution of skill; i) 1981 to 1897, ii) 1988 to 1993, iii)

1994 to 1996, and iv) 1997 to 2000. In Figure 3, we plot in the four panels the population

distributions from each of these eras.

In the first panel of Figure 3, we plot the seven posterior cross-sectional distributions

from the growing number of fund histories beginning in 1981 and ending in 1987. Each

distribution is symmetrical around the average fee of 1.5%. This symmetry indicates funds

26The posterior results using the normal-SM distribution are available upon request.
27To our knowledge a fully time-varying, nonparametric, population distribution has not been done.

MacEachern (1999) has come closest with a dependent Dirichlet process.
28New mutual funds were included when they had 4-months worth of returns. In contrast with how

straight-forward it is to re-apply our nonparametric approach to each year’s data set, re-estimating and
testing an array of different ordered, finite mixture, models would be very tedious.
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Figure 3: Posterior cross-sectional distributions of alpha starting with the return histories
of funds up to 1981 and then incriminating forward one year at a time from 1982 to 2000.
More formally, plots of π̂DPM (α|Rt), t = 1981, . . . , 2000, where Rt are the return histories
of all the mutual funds ever in business during the 1961 to year t time period. A new fund
is only included if it has a history of least four months. Each panel contains the population
distributions from that era; i) 1981–1987, ii) 1988–1993, iii) 1994–1996, iv) 1997–2000.
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Year Jt Kt Median Skew p0.05 p0.95 P (α > 0)

1981 328 1 1.220 0.068 −1.139 3.700 0.812
1982 348 1 1.314 0.262 −0.957 4.069 0.853
1983 382 1 1.296 0.042 −1.121 3.774 0.816
1984 432 1 1.318 0.065 −1.122 3.888 0.820
1985 487 1 1.395 0.011 −1.173 3.982 0.816
1986 577 2 1.234 0.379 −1.342 4.987 0.838
1987 665 1 1.595 0.078 −1.288 4.654 0.828
1988 778 2 1.305 1.041 −1.795 7.516 0.892
1989 854 2 1.329 1.016 −1.368 7.703 0.900
1990 902 2 1.279 0.571 −0.951 6.203 0.921
1991 983 2 1.185 1.124 −0.782 6.015 0.920
1992 1073 3 1.036 −0.521 −1.096 5.662 0.914
1993 1258 3 0.963 −0.477 −0.846 5.970 0.918
1994 1599 2 1.303 0.861 −1.151 5.373 0.922
1995 1939 2 1.210 0.544 −1.711 5.194 0.902
1996 2275 2 1.270 0.608 −1.183 4.890 0.918
1997 2704 2 1.314 −0.064 −1.540 4.150 0.900
1998 3364 3 1.164 −4.182 −2.695 3.065 0.803
1999 3977 4 1.160 −1.448 −2.188 2.119 0.778
2000 4539 3 1.444 4.584 −0.766 4.719 0.927

Table 2: Yearly evolution of the median, skewness, and probability of beating the passive
four-factor portfolio, P (α > 0), where Jt is the number of mutual fund, both alive and
dead, at year t, Kt is the posterior median number of clusters, and p0.05, and p0.95, are the
5th and 95th percentiles of the cross-sectional mutual fund performance distribution.

are skilled enough on average to cover their costs and equally likely to cover or not cover

their fees.

As the entry into the mutual fund industry accelerated during the 1988 to 1993 period,

the population distribution in the second panel of Figure 3 tightens around the mean. Dur-

ing this era, the probability of a fund selecting stocks that will result in an abnormally

negative alpha declines relative to the earlier episode as the left-hand tails for these distri-

butions are now thinner. Probability of finding highly skilled funds are also on the increase

as the right-hand tail of the population pushes out past six percent to eight percent. Hence,

the entry of new funds during this era and the performance of existing funds improved the

overall performance of the population.

During the 1994 to 1996 era, the population distribution continues to tighten around

the mean. However, after 1997 the population begins to change. In the bottom panel of

Figure 3, the population distribution starts to skew to the left. Ultimately a second mode
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appears at a negative alpha. This last era corresponds to the fastest growing period of the

mutual fund industry and, according to the population distribution, poorer stock-picking

ability.

In Table 2, we list the characteristics and features of the cross-sectional distributions

from Figure 3. Each line contains the total number of funds, both in and out of business,

from 1961 up to that year, Jt, the posterior median of the number of clusters, Kt, the

median and skewness, and the 5th-percentile, p0.05, and 95th-percentile, p0.95, of the cross-

sectional distribution, and the probability of an unknown mutual fund generating a positive

alpha, P (α > 0). Beginning in the 90s an arbitrary fund is exceptionally skilled, as defined

by having an alpha in the top 5% of the distribution, if it generated an alpha of two

to six percent. This value of alpha is smaller than a highly skilled fund from the 80s.

For example, over the 90s the 95th-percentile declined from approximately 6% to 2% per

annum. In contrast, these percentiles were never less than 3.7% in the 80s and reached a

high of 7.7% in 1989.

During the 90s, the alpha of an unskilled fund, as defined by the 5th-percentile, also

declined but in a more noisy fashion than did the alpha for a skilled fund. Poor performance

in the mutual fund industry went from −0.95% in 1990 to a low of −2.7% in 1998. Except

for 1998 and 1999, the probability of an unknown mutual fund being capable of generating

positive alphas stayed right around 90%. Thus, overall mutual fund performance went down

during the 90s relative to the 80s.

In Figure 4, we plot the population distributions of alpha from 1995 to 2001 using only

the return histories of those funds that opened for business during the 1993 to 2001 period.29

Funds that were new to the industry were more likely to generate a positive alpha as seen

in the positive primary mode. However, over this same period the probability of a new fund

generating a negative alpha is also increasing as the negative mode moves further to the

left. Thus, we conclude that during the latter half of the 90s when the number of new funds

entering into mutual fund industry was accelerating, a new fund was likely to be skilled and

capable of covering its fees. However, with each year there was an increasing chance the

new fund would be unable to earn a high enough return to justify its fees.

6.7 Comparison of the individual alphas

In Figure 5, we plot each of the 5,136 mutual fund’s 95% HPD interval for its alpha along

with the posterior median (represented as dots when visible). At the top of the figure are

the posterior results for the funds with the shortest histories. At the bottom of the figure

29A new fund was only included if it had twelve months of return performance.
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Figure 4: Posterior cross-sectional distribution of alpha from 1995 to 2001 using only the
performance histories of the funds that entered the business after 1992 and had a years
worth of performance data.
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are the results for the funds with the longest histories.

We calculate the 95% HPD intervals for three different models of the population. Panel

(a) of Figure 5 plots the HPD intervals where ability is believed to be idiosyncratic to the

mutual fund and the prior for alpha is N(0, s20) with 1/s20 = 0.30 Panel (b) plots the HPD

intervals using the approach of JS. The population is normally distributed but the mean and

variance are unknown and modeled with the uninformative Jeffreys prior, π(µα, σ
2
α) ∝ 1/σ2α.

Panel (c) of Figure 5 plots the 95% HPD interval of each fund’s alpha using our Bayesian

nonparametric approach. Our initial guess for the cross-sectional distribution of alpha is

again the diffuse Student-t distribution found in Eq. (19) whose mean is zero, scale 0.0011,

and 0.1 degrees of freedom.

30Because this is the Jeffreys prior the intervals in Panel (a) are equivalent to the 95% confidence intervals
of the OLS estimate of alpha.
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Comparing the funds’ posterior HPD intervals in the three panels of Figure 5, it is clear

that what one assumes about the nature of the population distribution affects the estimate

of a particular mutual fund’s alpha. The posteriors in Panels (b) and (c) draw on the

performance of other funds to make an informed guess about the stock-picking ability of

a particular fund. By borrowing information from other funds, the HPD intervals in these

two panels are tighter than those in Panel (a). As a result, the posteriors in Panel (b) and

(c) use information from the population to be more precise about a fund’s future ability to

produce excess returns than the idiosyncratic approach used in Panel (a).

Because the posteriors in Panel (a) of Figure 5 view skill idiosyncratically, the length of

a fund’s performance window influences the posteriors. Short-lived funds found at the top

of Panel (a) have larger and noisier HPD intervals than do the long-lived funds located at

the bottom. Although there are also funds with long performance histories that have wide

HPD intervals due to noisy and erratic performance histories.

At the other end of the spectrum are the tight and homogeneous HPD intervals in

Panel (b) of Figure 5. Believing a fund’s performance comes from a normal, cross-sectional,

distribution with an unknown population mean and variance shrinks a fund’s estimated

alpha towards the overall average alpha of the industry. Exceptionally skilled funds get

pooled together with average funds and funds with short or noisy performance histories

take on the skill characteristics of the population. Hence, the homogeneity of the HPD

intervals in Panel (b).

By treating all the alphas as draws from a normal population distribution, unskilled

funds, like the one near the top of Panel (a) of Figure 5 where the median alpha is close to

−50%, look better in Panel (b) than maybe they should. Furthermore, a highly skilled fund

like those in Panel (a) with posterior medians greater than 50% do not look so extraordinary

in Panel (b). Our Bayesian nonparametric learning approach automatically determines if

such funds should be pooled together or treated separately. In contrast to Panel (b), where

K is set, a priori, equal to one, the intervals calculated with our nonparametric approach in

Panel (c) randomly group together similarly skilled funds and integrate away the uncertainty

of K. Conditional on the random group, information is borrowed from the other funds in

the group and used to infer each of the fund’s alphas.

The benefits from letting K be unknown is found in the alpha for the Schroder Ultra

Fund. In Panel (c) of Figure 5, Schroder Ultra has the highest posterior median alpha of

all the funds at 50% per annum. The next closest fund is the Turner Funds Micro Cap

Growth fund at 33%. Our nonparametric sampler in Section 5 randomly groups Schroder

Ultra with other funds. Given the likely small size of this random, but highly skilled group,
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the variance of the group, σ2∗α,k, is likely large. According to Eq. (28), this large variance

causes Step 2 of the sampler to make posterior draws of the Schroder fund’s alpha that are

on average weighted more towards the sample average of the risk-factor adjusted returns

of the fund, T −1i

∑Ti
t=τi

r∗i,t, and less toward the average of the group, µ∗α,k. In the extreme

case where a fund has no peers, our Bayesian nonparametric approach essentially treats the

fund idiosyncratically as in Panel (a). As a result, the Schroder Ultra fund’s HPD intervals

and medians in Panels (a) and (c) are very similar. This similarity stands in stark contrast

to Panel (b) where, because of the shrinkage towards the population average, the posterior

alpha under a normal population does not even put Schroder Ultra among the top ten

performing funds.

6.8 Shrinkage

To determine how much a mutual fund’s alpha is affected by one’s beliefs about the cross-

sectional distribution of mutual fund performance, in Figure 6 we graph two scatter-plots.

In each scatter-plot we plot on the y-axis the posterior mean alpha for each of the 5,136

funds from our Bayesian nonparametric method. Panel (a) of Figure 6 plots these nonpara-

metric posterior mean alphas against the posterior mean alpha where skill is believed to be

idiosyncratic. In Panel (b), we graph on the x-axis the posterior mean of the alphas where

skill is believed to be normally distributed. The forty-five degree line in both plots shows

where the assumption about the cross-sectional distribution has no affect on the estimate

of a fund’s alpha relative to our nonparametric approach.

In Panel (a) of Figure 6, every mutual fund’s alpha has moved, to varying degrees, away

from the posterior beliefs of someone who believes the skill is idiosyncratic, and towards

zero; i.e., the points have moved vertically away from the forty-five degree line towards

zero. Hence, those who believe there is an unknown cross-sectional distribution of skill

underlying each fund’s performance level, and learns about it, discovers that funds identified

by those who view skill idiosyncratically as being skilled (unskilled) are less (more) capable

of selecting stocks that beat the market.

There are a handful of points in Panel (a) of Figure 6 where skill is so unique and

the return histories so informative that treating the fund idiosyncratically is only slightly

different from our nonparametric estimates. These funds are those whose posterior mean

alpha are closest to the forty-five degree line in Panel (a) and include both skilled and

unskilled funds. In general, there are fewer extraordinary funds when we do not treat skill

idiosyncratically, but, instead, treat each fund’s performance as a draw from an unknown

population distribution. By flexibly learning how skill is distributed over the mutual fund
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Figure 6: Scatter plots of the 5,136 fund’s posterior mean alphas where in both Panel (a) and
Panel (b) the y-axis are the posterior mean under our nonparametric hierarchical prior. The
x-axis of Panel (a) are the posterior mean alphas when funds are treated idiosyncratically
and the alphas’ priors is the Jeffreys prior. In Panel (b) the x-axis are the posterior mean
alphas under a normal prior whose mean and variance are unknown and modeled with the
Jeffreys prior, π(µα, σ

2
α) ∝ 1/σ2α. To provide a point of reference a 45-degree line has been

added to both panels to represent those posterior means where the two relative approaches
have the same guess for alpha.
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industry, we identify actual fund-specific performance skills while guarding against the noisy

performance measures the idiosyncratic approach finds for short lived funds.

Panel (a) of Figure 6 also helps us answer the question posed by Kosowski et al. (2006)

and Fama & French (2010) as to whether skilled funds are genuinely talented or just lucky.

We find luck playing little to no role in the success of the extraordinary funds whose poste-

rior mean alpha is greater than 4% on both the vertical and horizontal axis. The posterior

cross-sectional distribution of skill is very informative about the typical fund’s ability in the

sense that such funds have performance histories that are not exceptional enough for their

posterior distributions to differ from the population. In contrast, highly skilled funds have

posterior distributions that are distinctly different from the posterior population distribu-

tion. In Panel (a) of Figure 6, these exceptionally skilled funds were not lucky but were truly

skilled since their performance lead to posterior mean alphas greater than 4% under both

the nonparametric hierarchical prior (y-axis) and the idiosyncratic Jeffreys prior (x-axis).

A lucky fund is one of the many “skilled” funds whose posterior mean on the horizontal

axis is larger than 5%, for instance, the extreme fund whose posterior mean is nearly 80%,

but then shrinks close to zero under the nonparametric hierarchical prior. Later, in Table

3, we list the names of these highly skilled funds.

In contrast to Panel (a), many of the points in Panel (b) of Figure 6 lie on the forty-five

degree line. These alphas belong to funds having the same average ability and variance as

that of the normal cross-sectional distribution. Modeling the performance of this particular

group of funds as draws from a normally distributed cross-section would not interfere with

the expected value of the posterior alphas. However, identifying this group of funds from

the cross-section of funds, a priori, would be impossible. Our nonparametric approach on

its own identifies these ordinary funds as it learns about the population distribution.

From the off-diagonal points in Panel (b) of Figure 6 we discover some funds’ alphas

are drawn from groups whose means and variances are different from the global average

level of skill and its variance. If the population is thought to be normally distributed, many

extraordinarily skilled and unskilled funds would go undetected. For example, by learn-

ing the population distribution we find that the posterior alpha for Potomac OTC/Short

fund under-performs the market by an average of 27% a year, and does not have a positive

alpha.31 In stark contrast, investors who think skill is normally distributed over the pop-

ulation believe the Potomac OTC/Short fund can produce, on average, an excess market

return of less than 1% per year (located on the x-axis of Panel (b)).

31Potomac is the worse performing fund in our panel of mutual funds whose posterior mean alpha in both
panels of Figure 6 is the point located at the very bottom.
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The Potomac fund is not unique in this respect. Many other extraordinarily skilled and

unskilled funds look quite ordinary to those who believe skill is normally distributed across

funds. Clearly, the assumption of a normal population distribution adversely affects the

estimate of these funds alphas.32

6.9 Posterior distribution of each fund’s alpha

To evaluate and compare the skill level of the funds in our panel, we plot in Figure 7 the

posterior distribution of alpha for all 5,136 mutual funds. The blue lines are the posteriors

of the 3,844 mutual funds that were still open for business at the end of our sample. The

red lines are the posterior distributions for the 1,292 funds that were no longer in business.

Both types of colored lines have a degree of transparency so that darker shades of red,

blue, or purple (combinations of red and blue) show where the posterior distributions are

concentrated.

As we showed in Eq. (7), a fund’s posterior is proportional to

π(αi|r1, . . . , rJ) ∝ π(αi|r−i)f(r∗i |αi), i = 1, . . . , J,

where r∗i is the risk and factor adjusted return history of the ith fund.33 In other words,

when the return histories of the other J − 1 funds, r−i, have been observed, but before the

ith funds returns, ri, are seen, our understanding of the ith fund’s skill level is best described

by the “updated prior” distribution, π(α|r−i); i.e., the posterior population distribution or

posterior predictive distribution.

How different a fund’s posterior, π(αi|r1, . . . , rJ), is from the posterior predictive distri-

bution, π(αi|r−i), is how exceptional the fund is from a fund we have no information about.

The more uniquely shaped a fund’s posterior the more its likelihood, f(r∗i |αi), plays into our

understanding of its ability. Because our panel consists of 5,136 funds, the skewness, kurto-

sis, and multi-modality of the nonparametric posterior population distribution in Figure 1

is unaffected when we drop any fund from the panel. Given this robustness of the posterior

population distribution, we define a fund as being exceptional when its posterior for alpha

does not have the same bi-modal shape as π̂DPM (α|r1, . . . , rJ) ≈ π(αi|r−i). To identify

these exceptional funds in Figure 7 we plot in orange the posterior population distribution,

π̂DPM (α|r1, . . . , rJ).

32The performance measure of JS and Cohen et al. (2005) both suffer from this type of shrinkage toward
the average of the overall population.

33We could integrate out the betas and the return variance in which case a fund’s likelihood function,
f(ri|αi), is a Student-t distribution but we would require a different sampler for the DP unknowns.

37



Figure 7: Posterior cross-sectional distribution of alpha in orange and every funds posterior
distribution of alpha, π(αi|r1, . . . , r5136), i = 1, . . . , 5136, where the funds that were still in
business at the end of the sample are plotted in blue, whereas those funds that were not in
business are in red. Darker shades of red or blue indicate a higher concentration of funds
having similar shaped posteriors.

38



Many of the posterior distributions in Figure 7, be the fund dead or alive, resemble the

bi-modal, cross-sectional distribution of alpha. The large number of funds whose posterior

is similar to the population shows how important the posterior population distribution

is in determining the skill level of a fund, and, hence, how vital it is to modeling the

population. It also shows how little information there is about skill in most mutual funds

return history.34 For the typical fund with average performance, meaning its likelihood is

relatively flat, the posterior cross-sectional distribution resolves most of the uncertainty in

its alpha and, hence, its posterior distribution shrinks towards the population distribution.

Also, their is not enough information in the fund’s performance history for it to be classified

in a particular group. Instead, it is likely the fund finds itself belonging to the different

clusters just like a fund we know nothing about.

From Figure 7, we draw three conclusions about the skill level of the funds. First,

regardless of a fund being in or out of business, its posterior in general has two modes. The

secondary modes are close to −1%, indicating that the funds have the potential to generate

losses. The primary modes are close to 2%. Thus, many of the 5,136 funds are likely to

cover their fees, but there is a non-trivial chance the fund will fail to earn a return that

covers its costs.

The second finding from the posteriors in Figure 7 is the credible evidence of there being

a few exceptional funds. These funds are extraordinary either because they are unskilled

or because they are highly skilled. There are 21 exceptionally skilled funds where there is a

95% probability of its alpha being greater than 1.5%, and 50 exceptionally unskilled funds

that have the same probability of being less than 1.5%.

Finding so few exceptional funds runs counter to earlier empirical findings where there

is a larger presence of skilled and/or unskilled funds (Kosowski et al. 2006, Fama & French

2010, Barras et al. 2010, Ferson & Chen 2015). However, as we have already pointed out,

these earlier findings suffer from noisy estimates of alpha. Hence, we conclude that most

mutual funds are not extraordinarily talented or unskilled. Instead, most funds have a

higher chance of being just gifted enough to select stocks that, on average, result in a

return that justifies their costs, expenses, and fees.

Our third finding concerns those funds that are exceptionally unskilled but, for some

reason, are still in business. Several predictive densities in Figure 7 have fat tails over

negative values of alpha and were still not out of business. In Panel (a) of Figure 8, we plot

in blue the alive fund’s posterior and in red, the dead fund’s posterior distributions for the

34Not being able to accurately estimate a funds alpha with only its return history has been a well known
problem with OLS estimates of the alpha. The mutual fund skill literature is full of results where the R2s
are small.
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Figure 8: The posterior distribution of alpha where Panel (a) plots the posteriors of the
fifty unskilled fund’s who have at least a 95% chance its alpha will be less than 1.5 percent,
and Panel (b) are the posteriors for the twenty-one skilled funds who have at least a 95%
chance its alpha will be greater than 1.5 percent (the vertical line in both plots is at the
average fund’s fee of 1.5 percent). Posteriors for the funds that are in business at the end
of the sample are plotted in blue, whereas those that have closed are in red. In Panel (a)
there are a total of twenty-one dead unskilled funds. In Panel (b) there is only one dead
skilled fund (T. Rowe Price Capital Appreciation Fund).

50 exceptionally unskilled funds. Twenty-nine of these poor performing funds were still in

business at the end of our sample. This includes the worse performing fund from our panel

– the Potomac OTC/Short fund, whose expected alpha is −26% and has a 3% chance of

losing between 20% to 40% percent a year.

The posterior mean alphas for the extinct funds Bowser Growth Fund and Ameritor

Industry Fund are the most negative in the panel at −24% and −7%, respectively. The

other forty-seven unskilled funds earn their investors, on average, a gross alpha of between

zero to five percent a year. Nine of these funds had been in business since the early 1960s and

were still in business in 2001. Thus, we conclude that poor performance does not necessarily

lead investors to divest their money from the fund. Perhaps there are restrictions prohibiting

investors from withdrawing their investment or limiting redemptions.

In Panel (b) of Figure 8, we plot the posterior distribution for the 21 exceptionally

skilled funds. Notice how different these funds’ posteriors are from the nonparametric

posterior population distribution in Figure 1. These skilled funds have densities where the
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Fund Years of Operation Alpha 95% HPD

Turner Funds: Micro Cap Growth 1998-2001 33.07 [13.81, 51.01]
Schroeder Ultra Fund 1997-2001 49.77 [24.07, 71.86]
Artisan Mid Cap Fund 1997-2001 16.77 [1.26, 27.92
Needham Growth Fund 1996-2001 17.40 [0.51, 33.22]
Olstein Financial Alert Fund/C 1996-2001 13.84 [5.86, 21.87]
Fremont Mutual Fds:US Micro Cap Fund 1994-2001 13.23 [1.35, 21.94]
PIMCO Funds:Stocks Plus Fund/Instl 1993-2001 2.46 [1.33, 3.96]
Fidelity Dividend Growth 1993-2001 4.87 [1.08, 10.25]
Managers Funds:US Stock Market Plus 1992-2001 2.44 [1.44, 3.72]
Fidelity Low Priced Stock 1990-2001 5.93 [1.59, 9.34]
Victory Funds:Diversified Stock Fund/A 1989-2001 2.88 [1.16, 6.01]
T Rowe Price Capital Appreciation Fund 1986-1999 3.75 [1.49, 6.95]
JP Morgan Growth & Income Fund/A 1987-2001 6.30 [1.08, 12.24]
Gabelli Growth Fund 1987-2001 5.29 [1.40, 9.10]
Weitz Series Fund:Value Portfolio 1986-2001 4.50 [1.11, 9.07]
IDEX Janus Growth Fund/A 1986-2001 4.87 [1.15, 10.04]
Gabelli Asset Fund 1986-2001 4.99 [1.62, 8.01]
Oppenheimer Growth/A 1973-2001 3.82 [1.10, 8.10]
AXP Growth Fund/A 1972-2001 4.71 [1.24, 8.73]
Janus Fund 1970-2001 3.90 [1.21, 7.93]
Vanguard Morgan Growth/Inv 1968-2001 4.40 [1.94, 6.50]

Table 3: Individual mutual funds’ posterior mean of alpha and 95% highest posterior density
(HPD) interval from the newest to oldest, and who have at least a 95% chance of returning
a market excess return greater than the average mutual fund fee of 1.5%.

weight assigned to the alphas between 5% to 10% is noticeably greater than the population

distribution. A few of these exceptionally skilled funds have a primary mode at an alpha

larger than the primary mode of the population. Half of these funds have a primary mode

near 1.5%. Only one of the funds was no longer in business.

In Table 3, we list from shortest to longest return history, the 21 skilled funds posterior

mean of alpha, the number of years the fund had been in business, and the 95% HPD

interval. Four of the funds possess the extraordinary ability to pick stocks such that their

expected alpha is greater than 15% per year. The top performers are newer funds with less

than seven years of experience. There are also a few highly skilled funds, like the Janus

Fund, that have been in business since the 1970s. Hence, not all skilled funds suffer from

Berk & Green’s (2004) theory of decreasing returns to scale.
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7 Conclusion

With our Bayesian nonparametric learning approach, we find the posterior population dis-

tribution of the alphas for the actively managed mutual fund industry to be bi-modal,

fat-tailed, and skewed towards higher levels of skill. The primary mode is an alpha of 1.8%

per year and the secondary mode is −0.65%.

These modes and the skewness of the population means there is a higher probability

than previously thought that a fund, we know nothing about, will be skilled. In contrast,

under either a parametric, Gaussian, hierarchical, prior for alpha, or a finite ordered mixture

population model comprised of two Gaussian distributions, the alpha of an extraordinary

fund gets shrunk towards the modes of these parametric distributions. Hence, we also find

more exceptionally skilled funds than these parametric approaches.

Compared to an idiosyncratically skilled population, our nonparametric approach finds

fewer extraordinarily skilled and unskilled funds. Out of 5,136 funds, we find 21 (50) funds

have a 95% chance of its alpha (not) exceeding the average fee charged by a fund of 1.5%.

However, these extraordinary funds have very informative likelihoods that drives a wedge

between their alpha’s posterior and the population distribution. Hence, these skilled funds

are genuinely talented at picking under-valued stocks and are not just lucky. These skilled

fund’s posterior mean alphas were similar under both our nonparametric prior and the

OLS’s idiosyncratic prior. Ordinary funds that had larger posterior mean alphas under

the idiosyncratic prior lack the empirical performance in their likelihood to drive a wedge

between their posterior and the nonparametric population distribution of skill.

Learning how skill is distributed across the mutual fund industry with our Bayesian

nonparametric approach and using this information to better infer the stock picking skill

of a fund applies to other problems. For example, one can nonparametrically estimate

the population distribution of the multiple risk-factors’ beta coefficients. Currently, we are

investigating these and other questions, along with extending our Bayesian nonparametric

learning approach to a time-varying setting.
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Pástor, L. & Stambaugh, R. F. (2002a), ‘Investing in equity mutual funds’, Journal of

Financial Economics 63(3), 351–380.
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