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The term structure of interest rates

The term structure  of  interest  rates occupies a central  position in both  macroeconomics and finance.  The fundamental
relationship is the discount function, $\delta(t,\tau)$, which gives the price at time $t$ of default-free zero-coupon bond
that  pays one unit  at  time $\tau$.  Hereafter,  we assume that  the current  time is 0,  suppress  the first  index,  and write
$\delta(\tau)$. Thus $\delta(\tau)$ is the present value of one unit to be delivered with certainty in $\tau$ periods hence. We
will find it convenient to look at the log of the discount function, $\ell(\tau) := \log[\delta(\tau)]$.

Interest  rates  can  be  derived  from  bond  prices.  The  zero-coupon  (yield)  curve,  $z(\tau)  :=  -\log[\delta(\tau)]/\tau  =
-\ell(\tau)/\tau$, gives the yield-to-maturity on a zero-coupon bond that matures at time $\tau$. The forward rate curve,
$f(\tau) := -d\log[\delta(\tau)]/d\tau$, gives the marginal return at maturity $\tau$ of extending one's investment. We can
write the forward curve in terms of the zero curve by first writing $\delta(\tau) = e^{-\tau\,z(\tau)}$ and then applying the
definition for forward rates: $f(\tau) = z(\tau ) + \tau \,z'(\tau )$. Thus we see that the relationship between the zero and
forward curves is that of average and marginal curves.

The techniques embodied in the YieldCurve package are designed to extract the term structure from a set of bonds (i)
that are default-free and (ii) whose prices are determined by the present value of their stated payments. All U.S. Treasury
securities probably satisfy the first criterion, but some do not reasonably satisfy the second criterion, such as callable bonds,
``flower'' bonds, and bonds ``on special'' in the repo market. 

Consider a set of $n$ bonds.  Let $p_i$ be the price of bond $i$, $c_{ij}$ be its $j$-th payment, paid at time $\tau_{ij}$,
and $m_i$ be the number of  remaining payments.  Then\footnote{$^1$}{``$^\top$''  denotes transpose. In addition, the
prices, $p_i$, include accrued interest.}

$$ p_i = \sum_{j=1}^{m_i} c_{ij}\,\delta(\tau_{ij}) + \varepsilon_i ={c_i}^\top \widetilde{\delta}(\tau_i)  +  \varepsilon_i
$$

where $c_i$ is the vector of payments for bond $i$, $\tau_i$ is the vector of maturities of those payments, $\varepsilon_i$
is a random error and 

$$\widetilde{\delta}(\tau_i) := (\delta(\tau_{i1}), \cdots, \delta(\tau_{im_{i}}))^\top$$
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is the $m_i\times 1$ column vector that results from applying $\delta$ to each element of $\tau_i$. Thus, the present value
of the payments is given by $\pi_i := {c_i}^\top \widetilde{\delta} (\tau_i)$.

Fitting the term structure

Estimating the term structure from bond prices is not, however, a trivial matter. A variety of techniques have been proposed
over the past twenth-five years. McCulloch (1971, 1975) was the pioneer in this field.  Essentially, McCulloch parameter-
ized $\delta(\tau)$ as a cubic spline and estimated the spline coefficients with linear regression.  Following McCulloch,
Vasicek and Fong (1982), Shea (1984), Jordan (1984), Chambers, Carleton and Waldman (1984), and Coleman, Fisher,
and Ibbotson (1992), among others, extended the spline-based estimation technique to explore tax-related effects on bond
pricing, to consider different parameterizations of the splines, and to analyze potential sources of heteroskedasticity in the
residuals. Other authors have pursued alternative estimation techniques based on parsimonious parameterizations of the
discount function.  For  instance,  Nelson and Seigel (1987)  and Bliss (1993)  consider  a functional form with only four
unknown parameters. (In contrast,  for  a sample of 150 securities, McCulloch would typically choose a spline with 18
parameters.) 

Fisher, Nychka, and Zervos (1995) present an extension of the spline-based techniques (see their paper for the specifics.) In
particular,  they  fit  smoothing  splines  instead  of  regression  splines.  Smoothing  splines  have  a  penalty  for  excess
``roughness'' with a single parameter that controls the size of the penalty. An increase in the penalty reduces the effective
number of parameters, so that a single value controls the entire parameterization of the spline. For regression splines, the
number of parameters must be chosen in advance. By contrast, Fisher, Nychka, and Zervos use generalized cross valida-
tion to choose adaptively the roughness penalty---and hence the effective number of parameters. In other words, they let
the data determine the appropriate  number of  parameters. In addition,  they place the spline directly on the log of  the
discount function $\ell(\tau)$ and on the forward rate function $f(\tau)$, as well as on the discount function $\delta(\tau)$.
Based on  their  simulations and  on  their  estimation results  (using  daily data  on U.S.  Treasury coupon securities from
December of 1987 though September 1994), they found that splining the forward rate function with a smoothing spline and
choosing the effective number of parameters via generalized cross validation produced the most accurate and least biased
results.

This  chapter  describes  the  Mathematica  package  YieldCurve  that  implements  the  techniques  described  in  Fisher,
Nychka, and Zervos. YieldCurve  contains commands to estimate the term structure of interest rates using regression
splines and smoothing splines---with or without generalized cross validation. YieldCurve also has functions to display
and analyze results and produce reports.  YieldCurve  calls a number of other Mathematica packages---both standard
packages and other included packages.
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ü File names: Packages and Data

To install the packages, you should create a subdirectory, for example ycurve.  The following files should be copied to
this  subdirectory:  YieldCurve.m,  ShowTime.m,  PageLayout.m,  BSplineBasis.m,  CommaDelimited.m,
TriangularPlot3D.m, MakeCalendar.m, and daycount.m.\footnote{$^2$}{If are using DOS or Windows, the
files  names  are  yieldcur.m,  showtime.m,  pagelayo.m,  bsplineb.m,  commadel.m,  triangul.m,
makecale.m and daycount.m.} The first seven files contain Mathematica packages. The file daycount.m contains
information for determining the number of days until a payment is made. In addition, there are seven files with names of
the form yyyymmdd.dat  that contain data on Treasury securities, as well as strips.dat  and openmkt.dat. The
final file in the distribution is iddrop.m, which contains a list of the CUSIPs of securities with special features.

Two other files will be created in your working directory as you use the main package: LStart.m and DLStart.m If
FunctionalForm -> LogDelta or FunctionalForm -> DLogDelta, DiscountFunction will create the
file  LStart.m  or  DLStart.m  in  the  default  directory.   It  is  possible  that  bad  starting  values  in  LStart.m  or
DLStart.m could lead to difficultly in estimation. In any case, either file can always be deleted, causing internal defaults
to be used.

MakeCalendar.m contains functions to create and combine calendar lists. You will only need to use it if you wish to
extend the calendar before 1925 or after 2035 or if you wish to use bonds from other countries (which have different
holidays). 

Also  included  are  the  files  CRSPDailyBonds.m  and  CRSPMonthlyBonds.m.  These  files  contain  packages  that
provide access to the Center for Research in Security Prices (CRSP) Daily and Monthly U.S. Government Bond Files. Each
package contains (among other things) the function MassageCRSPData, which reads the (ASCII) data files and produces
an MD object. Interested users should read the files for additional information.

B-spline bases

A spline is a piecewise polynomial joined at so-called knot points. Let the order of the polynomial be given by $r$. Thus a
cubic B-spline is order 3, while a step function is order 0. At each knot point, the polynomials that meet are restricted so
that one additional independent parameter is added. For example, a step function has only one parameter, and thus there are
no restrictions between adjacent step functions for an 0-order spline. By contrast, a cubic polynomial has four parameters;
thus for a cubic spline, the level and first two derivatives of each cubic are restricted to be identical at the knot points. 

A numerically stable parameterization of a spline is provided by a B-spline basis. Let $\{s_k\}_{k = 1}^K$ denote the knot
points,  with  $s_k  <  s_{k+1}$,  $s_1  =  0$,  and  $s_K  =  M$,  the  maximum  maturity  of  any  bond  in  the
sample.\footnote{$^3$}{In all cases, we distribute the knot points according to the distribution of the final maturities of the
bonds. For example, with three knot points, we place the single interior knot point, $s_2$, at the median maturity.} The
knot points define $K-1$  intervals over the domain of the spline, $[0,\,T]$. For the purpose of defining a B-spline basis, it
is convenient to define an augmented set of knot points, $\{d_k\}_{k=1}^{K+2\,r}$, where $d_1 = \cdots = d_r = s_1$,
$d_{K+r+1} = \cdots = d_{K+2\,r} = s_K$, and $d_{k+r} = s_k$ for $1 \le k \le K$. Then a B-spline basis is a vector of
$\kappa = K + r - 1$ order-$r$ B-splines defined over the domain.
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Here is an example.

SetDirectory["/tr/data1/m1mef00/math/ycurve"]; (* your 
directory here *)

Needs["YieldCurve`"]; (* loads BSplineBasis as well *)
Off[ShowTime]; (* turn off timings *)

knots = Range[0, 5];
basisknots = PadKnots[knots, 3]

{0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5}

A B-spline is defined by the following recursion, where $1\le k \le \kappa $:\footnote{$^4$}{For a more detailed  discus-
sion of b-spline bases and their properties, see de Boor (1978).}

(* i-th spline, r-th order, evaluated at tau *)
phi[i_, r_, tau_] := 
  ((tau - k[i]) phi[i, r - 1, tau])/(k[i + r] - k[i]) + 
    ((k[i + r + 1] - tau) phi[i + 1, r - 1, tau])/

(k[i + r + 1] - k[i + 1])

(* terminal condition *)
phi[i_, 0, tau_] := d[i]

(* i-th spline, j-th region, r-th order, 
evaluated at tau *)

phi[i_, j_, r_, tau_] :=
phi[i, r, tau] /. {d[j] -> 1, d[_] -> 0}

We can see that the fourth cubic B-spline is a function of five knot points beginning with k[4]:

Cases[phi[4, 3, tau], k[_], Infinity] //Union

{k[4], k[5], k[6], k[7], k[8]}

The functional form for the fourth cubic spline over the sixth region (between k[6] and k[7]) is given by

phi[4, 6, 3, tau]

                                  2
        (tau - k[4]) (-tau + k[7])
-------------------------------------------- + -------------------------------------------    
(-k[4] + k[7]) (-k[5] + k[7]) (-k[6] + k[7])
 
                   (tau - k[5]) (-tau + k[7])
  ((-tau + k[8]) (----------------------------- +                   ----------------------------    
                  (-k[5] + k[7]) (-k[6] + k[7])
 
        (tau - k[6]) (-tau + k[8])
       -----------------------------)) / (-k[5] + k[8])       ----------------------------                    
       (-k[6] + k[7]) (-k[6] + k[8])

The function MakeBSpline will produce a BSplineFunction:
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?MakeBSpline

MakeBSpline[knots, d:0] takes a list of knot points and
   returns an InterpolatingFunction that represents a
   B-spline of order Length[knots] - 2. Valid orders are 0
   (step function), 1 (linear), 2 (quadratic), and 3
   (cubic), or higher. (Higher order splines use less
   efficient routines.) If the optional second argument is
   given as 1, then the derivative of the spline is
   returned. If the optional third argument is given as -1,
   then the integral of the spline is returned.
   Differentiation is supported to any order; integration is
   supported to order -2.

We can construct a cubic BSplineFunction for the forth B-spline over the sixth region:

bs463 = MakeBSpline[Take[basisknots, {4, 8}]]

BSplineFunction[{0, 4}, <>]

Plot[bs463[tau], {tau, 0, 4}];

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

The internal structure of a BSplineFunction can be seen to be an InterpolatingFunction wrapped in a Which:

InputForm[bs463]

BSplineFunction[{0, 4}, Which[#1 < 0, 0, #1 <= 4, 
    InterpolatingFunction[{0, 4}, 
      {{0, 0, {0, 0}, {0}}, 
       {1, 0, {1/6, 1/2, 1/3, 1/6}, {0, 0, 1}}, 
       {2, 1, {2/3, 0, -1/2, -1/2}, {0, 0, 1}}, 
       {3, 2, {1/6, -1/2, 0, 1/2}, {0, 0, 1}}, 
       {4, 3, {0, 0, 1/6, -1/6}, {0, 0, 1}}}][#1], True, 0]\
     & ]

The InterpolatingFunction contains information about the polynomials that make up the B-spline. We can see the
polynomials with PlotIFPolynomials:
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PlotIFPolynomials[bs463];
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A B-spline basis is a row vector: 

$$\phi^r(\tau) := (\phi_1^r(\tau),\cdots,\phi_\kappa^r(\tau)). $$

For example, we can make a cubic B-spline basis and evaluate it at $\tau = 3/2$:

phi3 = MakeBSplineBasis[knots, 3]
Through[phi3[3/2]]

{BSplineFunction[{0, 1}, <>], BSplineFunction[{0, 2}, <>], 
 
  BSplineFunction[{0, 3}, <>], BSplineFunction[{0, 4}, <>], 
 
  BSplineFunction[{1, 5}, <>], BSplineFunction[{2, 5}, <>], 
 
  BSplineFunction[{3, 5}, <>], BSplineFunction[{4, 5}, <>]}

    1   15  23  1
{0, --, --, --, --, 0, 0, 0}    -   -   -   -           
    32  32  48  48

Over any interval between adjacent knot points, $s_k$ and $s_{k+1}$, there are $r+1$ non-zero B-splines, with adjacent
intervals sharing $r$. This gives $\phi^r(\tau)$ a quasi-orthogonal structure from which it gets its numerical stability. 

Here we plot $\phi^r(\tau)$ for $r$ from 0 to 3 and $\tau$ from 0 to 5:
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bases = Table[MakeBSplineBasis[knots, i], {i, 0, 3}];
Show[GraphicsArray[Partition[

PlotBSplineBasis[#, 
DisplayFunction -> Identity]& /@ bases, 2],
DisplayFunction -> $DisplayFunction]];
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Any  $r$-order  spline  can  be  constructed  from  linear  combinations  of  the  B-splines,  $\phi^r(\tau)\,\beta$,  where
$\beta:=(\beta_1,\cdots,\beta_\kappa)^\top$ is a vector of coefficients. Let's plot $\phi^r(\tau)\,\beta$ for the given bases,
where the $\beta$s are given by Range[r + 5]:

betas = Table[Range[r + 5], {r, 0, 3}];
splines = MapThread[Through[#1[tau]] . #2 &, 

{bases, betas}];
Show[GraphicsArray[Partition[

Plot[#, {tau, 0, 5}, PlotRange -> {0, 8}, 
Ticks -> {Automatic, {2,4,6,8}},
DisplayFunction -> Identity]& /@ splines, 2]],
DisplayFunction -> $DisplayFunction];
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As an alternative, we can construct the linear combination directly with MakeFinalSpline:
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fsplines = MakeFinalSpline[knots, #]& /@ betas;
Plot[Evaluate[Through[fsplines[tau]]], {tau, 0, 5}];
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As is stands, $\phi^r(\tau)$ is a vector-valued function of a scalar argument, $\tau$. In what follows, it will prove useful to
have  notation  for  a  B-spline  basis  as  a  function  of  vector-valued  argument,  $\tau_i$.  To  that  end,  define
$\widetilde\phi_k^r(\tau_i) :=
(\phi_k^r(\tau_{i1}),\cdots, \phi_k^r(\tau_{im_i}))^\top$, an $m_i \times 1$ column vector, and $\widetilde\phi^r(\tau_i)
:= (\widetilde\phi_1^r(\tau_i),\cdots, \widetilde\phi_\kappa^r(\tau_i)),$ an $m_i\times \kappa$ matrix.

The function SplineMatrix returns the matrix $\widetilde\phi^r(\tau_i)$. The quasi-orthogonal structure is evident in a
plot:

taui = Table[i, {i, 0, 5, 1/3}];
phi3mat = SplineMatrix[knots, taui, 3];
ListPlot3D[phi3mat];
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Splining functional forms

Consider  splining  each  of  the  three  functional  forms:  let  $\delta_s(\tau)  :=  \phi^r(\tau)\,\beta$,  $\ell_s(\tau)  :=
\phi^r(\tau)\,\beta$, and $f_s(\tau) := \phi^r(\tau)\,\beta$. In the latter two cases, we can transform the splined functional
form to produce a discount function that can be used to represent present values
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$$\delta_s^\ell(\tau) := \exp(-\ell_s(\tau)) = \exp(\phi^r(\tau)\, \beta)$$

and

$$\delta_s^f(\tau) = \exp(-\int_0^\tau f_s(u)\,du) = \exp( -\int_0^\tau \phi^r(u)\,\beta \, du) = \exp(-\psi(\tau)\, \beta),$$

where $\psi(\tau) := \int_0^\tau \phi^r(u)\,\beta \, du$ is the integral of a B-spline basis. 
We replace $\widetilde\delta(\tau_i)$ in the present value expression with the spline representation; where we had $\pi_i =
c_i^\top\widetilde\delta(\tau_i)$,  we  now  have  (i)  $\pi_i^\delta(\beta)  =  c_i^\top\widetilde\phi^r(\tau_i)\,\beta$,  (ii)
$\pi_i^\ell(\beta)  =  c_i^\top  \exp(-\widetilde\phi^r(\tau_i)\,\beta)$,  and  (iii)  $\pi_i^f(\beta)  =  c_i^\top  \exp(-\widetilde
\psi^r(\tau_i)\,\beta)$.

In order to spline the forward-rate curve, we need the integrals B-splines, whic all of spline-making functions can produce.
For example,

bs463i = MakeBSpline[Take[basisknots, {4, 8}], -1];
Plot[bs463i[x], {x, 0, 4}];
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Mathematica automatically differentiates an InterpolatingFunction  but will not  integrate it.  The integral  of  an
InterpolatingFunction is instead calculated by IntegrateIF, which returns another InterpolatingFunc-
tion, which we can visually decompose:

PlotIFPolynomials[bs463i];
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-1

1

2

SplineMatrix can return $\widetilde \psi^r(\tau_i)$. The last argument indicates the order of differentiation (in this case
integration):
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phi3int = SplineMatrix[knots, {1, 3/2, 4.2}, 3, -1]

  1  7   13  1
{{-, --, --, --, 0, 0, 0, 0},      -   -   -                
  4  16  48  24
 
   1  127  141  77    1
  {-, ---, ---, ---, ---, 0, 0, 0},       --   --   --   --             
   4  256  256  384  384
 
   1  1  3
  {-, -, -, 1, 0.982933, 0.587867, 0.1288, 0.0004}}
   4  2  4

We see that the integral of a B-spline basis does not retain the quasi-orthogonality of the B-Spline basis.

Regression Splines

Since neither $\pi_i^\ell(\beta)$ nor $\pi_i^f(\beta)$ is linear in $\beta$, we must use some sort of nonlinear least squares to
fit the spline when we choose either of these functional forms.

Let $P$ be an $n\times 1$ vector of bond prices, $p_i$, and ${\mit \Pi}(\beta)$ be the corresponding vector of present
values of the bonds, $\pi_i^j(\beta)$. Then for a regression spline, we choose the $\beta$ that minimizes the sum of squared
residuals:

$$\min_\beta\, [(P-{\mit \Pi}(\beta))^\top(P-{\mit \Pi}(\beta))].$$

Using a standard technique (see Chow (1983)), we linearize ${\mit \Pi}(\beta)$ around an initial guess $\beta^0$,

$${\mit  \Pi}(\beta)  \approx  {\mit  \Pi}(\beta^0)  +  \left.(\beta  -  \beta^0){\partial{\mit  \Pi}  (\beta)  \over  \partial
\beta^\top}\right|_{\beta = \beta^0},$$

and define $X(\beta^0) := \left. {\partial {\mit \Pi}(\beta)/\partial\beta^\top} \right|_{\beta=\beta^0}$ and $Y(\beta^0) := P -
{\mit \Pi}(\beta^0) + \beta^0\, X(\beta^0)$. Rearranging the minimization problem using these definitions yields

$$ \min_{\beta} \left[ \Big(Y(\beta^0) - X(\beta^0) \beta \Big)^\top \Big(Y(\beta^0) - X(\beta^0) \beta \Big)\right].$$

The minimizer for the previous expression is 

$$\beta^1 = \Big(X(\beta^0)^\top X(\beta^0)\Big)^{-1} X (\beta^0)^\top Y(\beta^0),$$

where $\beta^1$ is an updated $\beta^0$.   We can use $\beta^1$ as the initial guess for the next iteration,  obtaining
$\beta^2$.  We iterate  until  convergence.  The solution  is  the  fixed-point  $\beta^* = (X(\beta^*)^\top  X(\beta^*))^{-1}
X(\beta^*)^\top Y(\beta^*)$.

By  contrast,  splining  the  discount  function  is  easier,  since  $\pi_i^\delta(\beta)$  is  linear  in  $\beta$.  The  relationship
between  bond  prices  and  present  values  can  be  written  $p_i  =  x_i\,\beta  +  \varepsilon_i$,  where  the  ``independent
variables'' are the bond payments evaluated according to the B-spline basis; i.e. $x_i := c_i^\top\widetilde \phi^r(\tau_i)$.
Now let $X$ be the matrix of corresponding to the $x_i$. We can use ordinary least squares (OLS) to determine $\beta^* =
(X^\top X)^{-1} X^\top P$. This produces a regression spline of the discount function of the sort McCulloch used.
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Smoothing Splines

A smoothing spline is a regression spline with a penalty for roughness.  With a smoothing spline, one can use a large
number of knot points but penalize excess variability in the estimated discount function, which has the effect of reducing
the effective number of parameters since the penalty forces implicit relationships between the parameters of the spline. The
penalty we describe here applies only to a cubic spline. Let $h(\tau)$ be the function being splined. The penalty is defined
as

$$\lambda \int_0^T h''(\tau)^2 d\tau,$$

a constant times the integral of the squared second derivative of the function being splined.

The penalty can be written in terms of the B-spline basis as follows: 

$$\lambda  \int_0^T  \left({\partial^2  \phi^3(\tau)\,  \beta  \over  \partial  \tau^2}\right)^2  \,  d\tau  =  \lambda\,
\beta^\top\left(\int_0^T \phi^3''(\tau)^\top\phi^3''(\tau) d\tau\right)\beta =\lambda \,\beta^\top H\beta .$$

$H$ is a $\kappa\times\kappa$ matrix that is band diagonal by the structure of a B-spline basis. Since any $\beta$ that
makes $h(\tau)$ linear in $\tau$ is not penalized, $H$ has two zero eigenvalues. Also note that $H$ is completely deter-
mined by the knot points. For example, we can construct $H$ for the knots given above:\footnote{$^5$}{We thank Jon
Faust and Ludger Hentschel for the code that constructs the penalty matrix.}

H = PenaltyMatrix[knots, 3];
NullSpace[H]

{{-14, -13, -11, -8, -5, -2, 0, 1}, 
 
  {15, 14, 12, 9, 6, 3, 1, 0}}

We see the the null space of $H$ is indeed two-dimensional.

The minimization problem can be stated as follows for a given $\lambda$: 

$$ \min_{\beta(\lambda)} \left[ \Big(P - {\mit \Pi} (\beta(\lambda))  \Big)^\top  \Big(P - {\mit \Pi}(\beta (\lambda)) \Big) +
\lambda\,  \beta(\lambda)^\top H \beta (\lambda) \right].$$

In general, the minimizer is found by nonlinear least squares as described in the previous section, iterating on

$$\beta^{i+1}(\lambda)  =  \Big(X(\beta^i(\lambda))^\top  X(\beta^i(\lambda))  +  \lambda  H  \Big)^{-1}   X  (\beta^i
(\lambda))^\top Y (\beta^i (\lambda))$$

until convergence:

$$\beta^*(\lambda)  =  \Big(X(\beta^*(\lambda))^\top  X(\beta^*(\lambda))  +  \lambda  H  \Big)^{-1}
X(\beta^*(\lambda))^\top Y(\beta^*(\lambda)).$$

(Note that when splining $\delta(\tau)$, $\beta^*(\lambda) = (X^\top X + \lambda H)^{-1} X^\top P.$)
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Formally, the previous expression is ridge regression estimator. By employing a roughness penalty, we can over-parameter-
ize the spline, making $X(\beta^*(\lambda))^\top X(\beta^*(\lambda))$ nearly singular, and use the penalty to reduce the
effective number of parameters. The penalty thus ``solves'' the multicollinearity problem. The advantage of this technique is
that the shape of the spline is controlled by a single parameter, $\lambda$.

One common measure of the effective number of parameters is the trace of $A(\lambda)$, denoted ${\rm tr}(A(\lambda))$,
where

$$A(\lambda)  :=  X(\beta^*(\lambda))\Big(X(\beta^*(\lambda))^\top  X(\beta^*(\lambda))  +  \lambda  H  \Big)^{-1}
X(\beta^*(\lambda))^\top.$$

Note that $A(\lambda)\,Y(\beta^*(\lambda))$ is the vector of fitted $Y$ values which in the linear case is the vetcor of
fitted prices. The extreme cases are ${\rm tr}(A(0)) = \kappa$ (with no penalty the number of effective parameters equals
the number of B-splines), and ${\rm tr}(A(\infty)) = 2$ (with an infinite penalty the number of effective parameters equals
2).

Generalized cross validation

In this section, we present a technique for choosing the appropriate value for $\lambda$. We choose the value of $\lambda$
that minimizes the ``generalized cross validation'' (GCV) value,

$$\gamma(\lambda) := {\Big((I - A(\lambda))Y (\beta^*(\lambda))\Big)^\top \Big((I - A (\lambda))) Y(\beta^*(\lambda))
\Big) \over \Big(n - \theta\,{\rm tr}(A(\lambda))\Big)^2}.$$

The numerator of the previous expression is the residual sum of squares. When $\theta = 1$, the denominator is the squared
effective degrees of freedom (the difference between the number of observations and the effective number of parameters).
The parameter $\theta$ is called the cost. It controls the trade-off between goodness-of-fit and parsimony. In plain-vanilla
GCV, $\theta=1$.  However, $\theta$ can be increased to reduce the signal extracted, thereby stiffening the spline. (In the
code, $\theta$ is called the TuningParameter, which is an option to DiscountFunction.)

When the discount function is splined directly, $A(\lambda) = X(X^\top X + \lambda H)^{-1} X^\top$ and there is a
simplified  expression  for  $\gamma(\lambda)$  that  can  be  minimized  directly.  In  general,  however,  a  new
$X(\beta^*(\lambda))$ matrix must be formed for each value of $\lambda$. Thus for each value of $\lambda$ we test, we
must solve for $\beta^*(\lambda)$ and then calculate $\gamma(\lambda)$.  The overall solution is given by

$$\beta^*(\lambda^*)  =  \Big  (X  (\beta^*  (\lambda^*))^\top  X  (\beta^*  (\lambda^*))  +  \lambda  H  \Big)^{-1}  X
(\beta^*(\lambda^*))^\top Y(\beta^*(\lambda^*)),$$

where $\lambda^*$ minimizes $\gamma(\lambda)$.
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Implementing the Estimators

For smoothing splines, we need starting values for $\lambda$. However, it is not easy to know in advance what a good
starting value is.  At extreme values of $\lambda$ (both large and small) the GCV function becomes flat (see below) and
optimizers can get stuck at non-minimums. Experimenting with differnt values is important to find out where good starting
values are for a given data set. We have found that starting near $10^{10}$ usually (but not always) converges to the true
global minimu. In addition, one may need to ``tune'' the FindMinimum routine. For example, one may need to boost the
accuracy goal; e.g., AccuracyGoal -> 10.

When splining either $\ell(\tau)$ or $f(\tau)$, we need starting values for $\beta$ as well. The fixed point problem will not
converge with bad starting values. Fortunately, good starting values for $\beta$ are easy to calculate. One of the properties
of B-splines is that $\sum_{k=1}^\kappa \phi(\tau) = 1$. As a consequence, the coefficients, $\beta$, track the value of the
function, $\phi(\tau)\,\beta$. Thus any reasonable estimate of the function to be splined can be used to form starting values.
For example, suppose a crude estimate of the function to be splined is $\widehat h(\tau)$.  For a cubic spline, let the
starting value for $\beta_k$ be $\beta_{k0} = {1 \over 3} \sum_{i=k}^{k+2} \widehat h(d_i)$. With these starting values,
the fixed point problem converges rapidly. The internal default for the yield curve is a flat 5 percent curve. If DLStart.m
or LStart.m is used, the yield curve stored in there is used.

Usage Overview

A typical session will include reading data, calculating when the coupon payments occur, estimating the yield curve. A
session may include calculating yields and yield errors and producing graphs and reports.

We start by reading some data:

md = ReadData["19880719.dat"]

-MD[{1988, 7, 19}]-

ReadData  reads  the data in 19880719.dat  and creates an MD  object,  which in this  case is named md  (for  future
reference). The MD object contains information about the bonds found in the input file. ReadData requires the data be in a
particular format, which we can see as follows:

First @ ReadList["19880719.dat", String]

7/19/1988,912794PY4,8/4/1988,0.5,0,99.7321

The order of fields is quote date, I.D. number, maturity date, original term to maturity (in years), coupon rate, and price per
\$100 of face value (not including accrued interest for coupon bonds).

Let's see what options ReadData takes:
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Options[ReadData]

{Description -> {}}

One can add a description (a string or list of strings) to help keep track of different MD objects. 

A list of information the object contains can be had by entering MDSelectors.  The selectors can be used to extract
information the bonds included:

MDSelectors

{CouponRate, Description, IDNumber, MaturityDate, 
 
  NumberOfSecurities, Price, QuoteDate, SettlementDate, 
 
  Term}

Here are two examples:

NumberOfSecurities[md]
CouponRate[md] //Short

224

{0, 0, 0, 0, 0, 0, 0, 0, <<212>>, 8.75, 8, 8.25, 8.875}

The next step is to construct all the payments ($c_i$) and the number of days to each payments ($\tau_i$) for each of the
bonds in the sample. ConstructPayments does this. First, let's see what the options are:

Options[ConstructPayments]

{FullPrice -> False, PaymentsPerYear -> 2}

These are the appropriate options for our data: U.S Treasury coupon securities pay coupons every six months, and our
coupon-bond price data does not include accrued interest (which therefore must be added by ConstructPayments).
Neither of these options has any effect on bills or STRIPs. 

cp = ConstructPayments[md]

-CP[{1988, 7, 19}]-

ConstructPayments  calculates  the  number  of  days  to  each  coupon  payment for  each  bond  in  the  sample,  using
information in daycount.m. It takes an MD object as an argument and returns a CP object that contains a reference to the
MD object used to create it. Thus, CouponRate[cp] will return the same list of coupon rates for the bonds in the sample.
CPSelectors is a list of information stored in CP objects.

CPSelectors

{AccruedDays, AccruedInterest, DaysInPeriod, 
 
  DaysToPayments, FullPriceQ, LastPayment, NextPayment, 
 
  Payments, PaymentsPerYear, QuoteDate, RemainingPayments}
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DaysToPayments[cp] //Shallow
Payments[cp] //Shallow
CouponRate[cp] //Shallow

{{15}, {43}, {71}, {99}, {128}, {155}, {1}, {8}, {22}, 
 
  {29}, <<214>>}

{{100}, {100}, {100}, {100}, {100}, {100}, {100}, {100}, 
 
  {100}, {100}, <<214>>}

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, <<214>>}

We see that each of the first 10 securities is a Treasury bill with one remaining payment of 100.

We are now ready to fit the term structure. DiscountFunction is the main estimation function. It takes a CP object as
an argument and returns a DF object. The default functional form is DLogDelta, which indicates that the forward rates
should be splined. The default LambdaValue is Automatic, which indicates the generalized cross validation should be
used to determine the value of $\lambda$, the weight on the penalty. The DF object contains the results of the estimation,
including for example the estimated spline (FinalSpline[df]) and the difference between the actual and fitted bond
prices (PriceError[df]).

First look at the options available for DiscountFunction:

Options[DiscountFunction]

                                 #2 - #1
{BetaConvergenceTest -> (Max[Abs[-------]] < 0.0001 & ),                                  ------                  
                                   #2
 
                      30
  Bounds -> {0., 1. 10  }, DropByTerm -> 0, 
 
  FunctionalForm -> DLogDelta, IDNumberDropList -> {}, 
 
  InitialCurve -> Automatic, Knots -> Automatic, 
 
  LambdaValue -> Automatic, Lambda0 -> Automatic, 
 
  MaximumMaturity -> 30, ObservationWeights -> Automatic, 
 
  OvernightForwardRate -> Automatic, Restriction -> True, 
 
  ShowLambdaProgress -> True, SplineOrder -> 3, 
 
  TuningParameter -> 2}

In addition to the options listed, one can pass options for FindMinimum (such as AccuracyGoal -> 10).

It's always a good idea to read the usage statement.
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?DiscountFunction

DiscountFunction[cp] estimates a discount function for a
   given day.  Run MassageData and ConstructPayments first
   to create the CP object. The default options are Knots ->
   (number of securities)/3, DropByTerm -> 0 (drop the 0
   most recently issued securities of each term),
   MaximumMaturity -> 30. The default FunctionalForm is
   DLogDelta, which uses a nonlinear routine to estimate the
   forward rate function; other functional forms are
   LogDelta and Delta. If DLogDelta or LogDelta is used,
   DiscountFunction takes options to set the starting values
   (Lambda0, Bounds, and options to tune FindMinimum) and
   looks for a file named "LStart.m" or "DLStart.m" to find
   starting values for beta0 and lambda0.  If the
   appropriate file cannot be opened, internal default
   values are used.

df1 = DiscountFunction[cp, FunctionalForm -> Delta,
LambdaValue -> 10^10]

-DF[{1988, 7, 19}]-

Setting LambdaValue -> 10^10 fixes the value of $\lambda$ without minimizing the GCV function. The DFSelec-
tors can be used to extract information from the DF object:

DFSelectors

{AverageAbsoluteError, BetaHat, BetaHatCovarianceMatrix, 
 
  Delta, DropByTerm, EffectiveParameters, FinalSpline, 
 
  FixedLambdaQ, ForwardCurve, GCVMinimizedQ, GCVValue, 
 
  KeepList, Knots, Lambda, MaximumMaturity, 
 
  NumberOfObservations, ObservationWeights, PredictedPrice, 
 
  PriceError, QuoteDate, ResidualVariance, RestrictionQ, 
 
  SemiAnnualForwardCurve, SemiAnnualZeroCurve, 
 
  Significance, SplineOrder, TuningParameter, ZeroCurve}

For example, we can find the average absolute pricing error:

AverageAbsoluteError[df1]

0.82538

This is an error of 82.5 basis points per \$100 of face value. This is not very good, and we will see why in a moment.

There are other functions that take DF objects as arguments as well. For example,
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DFSummaryStatistics[df1]

no. of obs.........   224
longest payment....    29.82 years
no. dropped........     0
functional form....  Delta
restriction........  True
minimize GCV.......  False
tuning parameter...     2
no. of knots.......    74
no. of parameters..    31.8
lambda.............     1.00e10
residual variance..     7.53003
avg. abs. error....     0.8254

We see  that  the  number  of  knot  points  (chosen  automatically)  is  74,  but  with  the  the  penalty  we  used,  $\lambda =
10^{10}$, the effective number of parameters is only 31.8. Here are the forward rate (dashing) and zero-coupon rate curves
(If you have a color screen, use can use the option Color -> True in ShowGraph):\footnote{$^6$}{Note that both
ShowGraph and DFSummaryStatistics can be combined with DFSummaryPage, which is  especially useful  for sending
reports to a printer.}

ShowGraph[df1, PlotStyle -> {Dashing[{.02, .01}],{}}];
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7/19/1988, 74 knots,  31.8 parms, Delta

This looks bad---the term structure is over-parameterized. Let's examine the generalized cross validation function:

Plot[GCVFunction[10^x], {x, 0, 20}];
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Notice the fuction is flat at both ends. An adaptive optimizer (such as FindMinimum) can get stuck in these flat regions. It
looks like the minimum is between $10^{10}$ and $10^{16}$. 
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Plot[GCVFunction[10^x], {x, 10, 16}];
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The minimum appears to be close to $10^{14}$.  Let's use that as a starting value to applay GCV. Note that a pair of
starting values is required.

df2 = DiscountFunction[cp, FunctionalForm -> Delta,
Lambda0 -> {10^14, 1.1 10^14}];

{Lambda[df2], EffectiveParameters[df2], 
AverageAbsoluteError[df2]}

           14
{1.16709 10  , 4.14526, 0.919242}

We see that $\lambda^*$ is close to our guess, and that the number of parameters has fallen to 4.1 while the average
absolute error has risen a bit to 92 basis points. Let's look at the yield curves:

ShowGraph[df2, PlotStyle -> {Dashing[{.02, .01}],{}}];
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7/19/1988, 74 knots,   4.1 parms, Delta

These curves are much more well-behaved. But recall that the average pricing error is large (for Treasury bonds). Let's look
at the pricing errors:
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MaturityPlot[PriceError[df2]];
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There are a few enormous outliers. What is wrong with these securities? The answer is that we have included some callable
bonds and some flower bonds in the sample. The prices of these bonds reflect features that are not captured in the present
value function directly. Including them in the estimation will affect the results in two ways. First, their inclusion will affect
the value of $\beta^* (\lambda^*)$, the estimated spline coefficients, conditional on the value of $\lambda$. But perhaps
more importantly, their inclusion will affect the value of $\lambda^*$ chosen via GCV. This is because minimizing the
GCV function is a signal-extraction technique: When there is more noise in the data, a larger penalty will be chosen for a
smoother curve at the expense of the sum-of-squares fit. 

The solution to this problem is to remove the securities with special features from the estimation. We can do that with
IDNumberDropList, an option to DiscountFunction. The file iddrop.m contains a list of CUSIPs of the securi-
ties with special features.

iddrop = << iddrop.m;
df3 = DiscountFunction[cp, FunctionalForm -> Delta,

LambdaValue -> 10^10, IDNumberDropList -> iddrop];

Plot[GCVFunction[10^x],{x, 8, 14}];
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Now the minimum appears to be between $10^{11}$ and $10^{12}$.
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df4 = DiscountFunction[cp, FunctionalForm -> Delta,
Lambda0 -> {10^11.5, 1.1 10^11.5},
IDNumberDropList -> iddrop];

DFSummaryStatistics[df4]
ShowGraph[df4, PlotStyle -> {Dashing[{.02, .01}],{}}];

no. of obs.........   196
longest payment....    29.82 years
no. dropped........     0
functional form....  Delta
restriction........  True
minimize GCV.......  True
tuning parameter...     2
no. of knots.......    65
no. of parameters..    15.4
lambda.............     1.74e11
residual variance..     0.02436
avg. abs. error....     0.0990
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7/19/1988, 65 knots,  15.4 parms, Delta

The number of effective parameters is 15.4 and the average absolute error is down to about 10 basis points. This is quite an
improvement from the previous fit. 

It turns out that there is another class of securities that tends to have another additional feature that is not captured in the
present value of the the stated payments. The one or two most-recently-issued securities of a given original term-to-matu-
rity are often ``on special'' in the repo market. As such, an additional stream of payments can be obtained in the financing
market by the holder of the security. We can screen out the most recently issued securities by term with another option to
DiscountFunction:
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df5 = DiscountFunction[cp, FunctionalForm -> Delta,
DropByTerm -> 2, 
Lambda0 -> {10^11.5, 1.1 10^11.5},
IDNumberDropList -> iddrop];

DFSummaryStatistics[df5]
ShowGraph[df5, PlotStyle -> {Dashing[{.02, .01}],{}}];

no. of obs.........   197
longest payment....    29.82 years
no. dropped........     2
functional form....  Delta
restriction........  True
minimize GCV.......  True
tuning parameter...     2
no. of knots.......    65
no. of parameters..     5.1
lambda.............     3.34e13
residual variance..     1.36962
avg. abs. error....     0.4149
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The pricing errors are a bit smaller. And although the number of knots chosen was 7 fewer, the number of effective parame-
ters dropped by less than 4.

Let's use this discount function for an illustrative digression (even though it could probably be improved on by using a
differenct functional form).  Consider a coupon bond with a face value of \$1 that pays its coupon as a continuous stream-
--an instantaneous coupon bond. Let this bond mature at time $\tau$. The (instantaneous) swap rate is the coupon rate that
makes the value of this bond equal \$1 today. The (instantaneous) forward swap rate is the coupon rate that makes the
forward value of the bond equal the forward value of \$1 at time $t'$.  Here is the formula for the forward swap rate: 

$$s(t',\tau) = {\delta(t') - \delta(\tau) \over \int_{t'}^\tau \delta(u)\,du}$$

We can plot the instantaneous forward swap surface as follows. First extract $\delta(\tau)$ from the DF object (otherwise it
the plotting routine will run much slower) and then run PlotSwapSurface:
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delta = Delta[df5];
PlotSwapSurface[delta];
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The spot swap curve (also known as the par coupon yield curve) is on the nearest face, while the forward rate curve runs
along the diagonal. PlotSwapSurface calls TriangularPlot3D, a package that is included in the distribution along
with YieldCurve.

Now let's calculate the actual and fitted yields. First consider how to compute the compouning. The default uses the Securi-
ties Industry Association Standard Securities Calculation Methods. 

Options[YieldCalc]
?Compounding

{Compounding -> SIACompounding}

Compounding is an option for YieldCalc that specifies how to
   handle the compounding of yields. The Default is
   Compounding -> SIACompounding, which specifies the use of
   the Securities Industry Association formulas. Currently
   this handles zeros incorrectly. The other valid setting
   is Compounding -> ContinuousCompounding, which specifies
   the use of continuous compounding for bills and zeros.
   Compounding is also a YCSelector. It returns the setting
   used for the constructions of the YC object.

SIACompounding is useful for comparing with yields quoted in the newpaper. On the other hand, to compare the yields
on bills or strips to the continuously compounded ZeroCurve, it is useful to use Compounding -> ContinuousCom-
pounding. (As an alternative, one can use SemiAnnualZeroCurve instead.)

Now let's calculate the actual and fitted yields. 

yc = YieldCalc[df5]

-YC[{1988, 7, 19}]-
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YieldCalc calculates yield to maturity for each of the bonds in the sample (Yield[yc]) and the difference between
that yield and the predicted yield (YieldError[yc]), among other things. YieldCalc can be run on a CP object, in
which case it will not attempt to calculate predicted yields.

MaturityPlot[Yield[yc]];
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Although yields are ploted in percent, yield errors are ploted in basis points:

MaturityPlot[YieldError[yc]];

0 5 10 15 20 25 30

years

-500

-400

-300

-200

-100

0

100

r
o

r
r

E
d

l
e

i
Y

7/19/1988

As we see, the outliers compress the image of the rest of the data. If one is not interested in pricing the securities with
special features, one can omit them from the data file or create another MD object that excludes them (see below).

So far we have restricted ourselves to splining the discount function directly, largely for speed considerations. With a large
number of securities, the nonlinear routines run quite slowly. So to speed things up, we will spline only Treasury bills.

pos = Flatten @ Position[CouponRate[md], 0|0.];
mdbills = MDSubset[md, pos];
cpbills = ConstructPayments[mdbills];

For comparison purposes, we will spline the discount function first with no penalty:

dfbills1 = DiscountFunction[cpbills,
FunctionalForm -> Delta, MaximumMaturity -> 1,
LambdaValue -> 0]

-DF[{1988, 7, 19}]-
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PlotGCVFunction[];
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dfbills2 = DiscountFunction[cpbills,
FunctionalForm -> Delta, MaximumMaturity -> 1,
Lambda0 -> {10^8, 10^9}];

-DF[{1988, 7, 19}]-

dfbills3 = DiscountFunction[cpbills, DropNumber -> 0,
FunctionalForm -> DLogDelta, MaximumMaturity -> 1,
LambdaValue -> 0];

lambdastar = 0

-DF[{1988, 7, 19}]-

PlotGCVFunction[];
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dfbills4 = DiscountFunction[cpbills,
FunctionalForm -> DLogDelta, MaximumMaturity -> 1,
Lambda0 -> {10^11, 10^12}];

lambda = 1.*10^11
lambda = 8.*10^10
lambda = 1.12360679775*10^11
lambda = 1.11014526840039*10^11
lambda = 1.200000000000047*10^11
lambda = 1.076393202250034*10^11
lambda = 1.152786404500073*10^11
                       11
lambdastar = 1.15279 10

-DF[{1988, 7, 19}]-
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Note that when the functional form is either LogDelta or DLogDelta, the option ShowLambdaProgress  controls
whether the adaptive seach routine reports its progess or not. For long calculations involving many securities and many
knot points, it is useful to see how $\lambda$ evolved and where it ended if the the calculation was ultimately aborted by
the user or if it bombed on its own. 

Now let's compare the graphs of the two estimation techniques:

ShowGraph[dfbills2];
ShowGraph[dfbills4];
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Very similar looking results in this case. In other cases, the results may differ substantially.
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Two ways to use the program

ü Interactive

The program was designed to facilitate an interactive examination of  how well different splining methods fit  the term
structure. To that end, we have built in flexibility as to the number and placement of knot points, the functional form to be
splined, and the size of the penalty and technique of choosing it. The way in which we have stored the output at each stage
(in self-contained,  insulated objects) allows the user to have multiple estimates of the term structure available at once,
making comparisons easy. For example, one can run DiscountFunction with different settings on the same data as we
have done above. All of this is easily accomplished by giving different objects different names.

ü Estimation loop

Some users may wish to run the same settings on many different days of data and save some of the results to a file. Here are
some suggestions as to how to do that. In a separate subdirectory (for convenience) create your data files, one per day.
Name them in such a way that they are in calendar order (for convenience). Use SetDirectory to change the directory.
Use FileNames  to get a list of the file names. Write a function that (i) estimates the term structure according to the
settings you have chosen and (ii) extracts the information you want and appends it to a file. Map that function onto the list
of filenames.

Here is an example of such a function. It takes two arguments, an input file name (where to find the data) and an output file
name (where to append the results).

EstimationLoop[in_String, out_String] :=
  Module[{md, cp, df, qd, zc, fc, zeros, forwards},
  (* estimate the term structure *)
  md = ReadData[in]; (* or use a version of MassageData *)
  cp = ConstructPayments[md];
  df = DiscountFunction[cp]; (* use your settings *)
  (* extract the zero and forward curves *)
  zc = ZeroCurve[df];
  fc = ForwardCurve[df];
  (* read off zero and forward rates every 6 months *)
  zeros = Table[{m, zc[m Years]}, {m, .5, 30, .5}];
  forwards = Table[{m, fc[m Years]}, {m, 0, 30, .5}];
  (* get the instantaneous zero rate from the forward curve *)
  PrependTo[zeros, First @ forwards];
  (* prepare data for file *)
  qd = DateToString @ QuoteDate[md];
  zeros = Join[{qd, "z"}, #]& /@ zeros;
  forwards = Join[{qd, "f"}, #]& /@ forwards;
  (* append data to output file *)
  AppendDelimited[out, #]& /@ {zeros, forwards}]
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Here is the usage. EsitmationLoop[#, "output.dat"]& /@ fn, where fn is the list of input data file names. A
typical row in output.dat will look like:

 "9/29/1993","z",7.5,5.21428

This file can be read back into Mathematica using

data = ToExpression @ ReadDelimited["output.dat"];

The dates can be converted to {yyyy, mm, dd} format with StringToDate. The file can also be searched using
FindList.  (StringToDate,  DateToString,  AppendDelimited  and  WriteDelimited  are  defined  the
package CommaDelimited, which is distributed with YieldCurve.) 

The structure of MD, CP, and DF objects

In this section we describe the structure of MD, CP, and DF objects. These objects are merely ``wrappers'' that contain (and
hide) the data and results. This section will serve two purposes. First, it will help those who wish to write their own version
of ReadData (or its older cousin, MassageData), and second it describes the overall structure of the YieldCurve
package.

ü MD objects

The structure of the flat file can be seen as follows. We select a few rows from the file:

pos = {1, 30, 60, -1};
ReadList["19880719.dat", String][[ pos ]]

{7/19/1988,912794PY4,8/4/1988,0.5,0,99.7321, 
 
  7/19/1988,912794SC9,6/8/1989,0.5,0,93.5669, 
 
  7/19/1988,912810CM8,2/15/2005,25,11.75,118.719, 
 
  7/19/1988,912827WK4,7/15/1995,7,8.875,99.625}

The fields in the file are quote date, identification number, maturity date, original term to maturity (in years), coupon rate,
and price per hundred dollars of face value (in decimal form). The price does not include accrued interest for coupon
bonds.  Fields are separated by commas  with no intervening spaces.  The identification number and the term are both
required, but neither need be meaningful nor unique. (In fact, in the data above, the term for all bills is set to 0.5, which is
not true since some bills have an original term to maturity of 1 year.) The identification number is useful for IDNumber-
DropList and the term is useful for DropByTerm, both options of DiscountFunction.

We can easily create a mini-MD object of these five securities to see what it looks like internally:

?MDSubset

MDSubset[md, poslist] creates an MD object that contains a
   subset of bonds from another MD object according to the
   list of positions given.
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mdsub = MDSubset[md, pos];
InputForm[mdsub]

MD[{1988, 7, 19}, {{1988, 8, 4}, {1989, 6, 8}, 
   {2005, 2, 15}, {1995, 7, 15}}, {0.5, 0.5, 25, 7}, 
  {0, 0, 11.75, 8.875}, {99.7321, 93.5669, 118.719, 
   99.625}, {"912794PY4", "912794SC9", "912810CM8", "91282\
    7WK4"}, {}]

The MD object contains seven items, each of which is accessible via an MDSelector: QuoteDate, MaturityDate,
Term, CouponRate, Price, IDNumber, and Description. An additional MDSelector, SettlementDate  is
not contained in the MD object; instead, it is calculated on demand (see below). 

The user may write a different ReadData function to read data in a different form. What is required for the program to
work properly is to have the new ReadData  production  an MD  object  with the correct internal structure. Here is the
relevant Mathematica code the sets up the MDSelectors and formats the MD objects:

MD /: QuoteDate[md_MD]      := md[[1]]
MD /: MaturityDate[md_MD]   := md[[2]]
MD /: Term[md_MD]           := md[[3]]
MD /: CouponRate[md_MD]     := md[[4]]
MD /: Price[md_MD]          := md[[5]]
MD /: IDNumber[md_MD]          := md[[6]]
MD /: Description[md_MD]    := md[[7]]
MD /: NumberOfSecurities[md_MD] := Length[Price[md]]
MD /: SettlementDate[md_MD] := FirstBusinessDay @ 
     DaysPlus[QuoteDate[md], BusinessDaysToSettlement]
MD /: WhenceMD[md_MD]       := md

Format[md_MD] := StringForm["-MD[`1`]-", QuoteDate[md]]

MDSelectors = Sort @ {QuoteDate, MaturityDate, Term, 
CouponRate, Price, IDNumber, Description, 
SettlementDate}

Here is an earlier version of ReadData, MassageData, that uses symbolic switches to identify the structure of the data
file.

MassageData[OpenMarket] reads the file openmkt.dat. That file has a different structure. In particular, security
price quotes are given; bills are quoted as banker's discounts and coupon securities are quoted in 32nds.

First @ ReadList["openmkt.dat",String]

{1993,10,27} 912810DP0 {2015,2,15} 11.250 10957 159.13

mdopen = MassageData[OpenMarket]

-MD[{1993, 10, 27}]-

MassageData[Strips] looks for the flat file strips.dat in the working directory and assumes it has the following
structure:
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Take[ReadList["strips.dat", String], 3]

{9/30/1994,11/15/1994,99.46875, 
 
  9/30/1994,11/15/1994,99.46875, 
 
  9/30/1994,2/15/1995,98.09375}

Note the following aspects of structure of the data file. There are only three fields per record: quote date, maturity date, and
price as a decimal. The missing information, which is not necessary to run DiscountFunction, is simply ``made up'' by
MassageData.
In this case, the terms-to-maturity are arbitrarily set to -1 and the IDNumbers are set to "N/A". The Description is set
to {"Strips"}. The term of -1 is used by ConstructPayments to distinguish strips from bills for the purposes of
the  Security  Industry  Associations  standard  securities  yield  calculations,  which  treat  bills  and  strips
separately.\footnote{$^7$}{Bills and strips are treated the same when yields are calculated continuously.}

If one wanted to distinguish between principal and coupon STRIPs, one could add a fourth column to strips.dat: an
IDNumber that took on two values, say "P" for principal and "C" for coupon. One would write a new version of Mas-
sageData (or ReadData) to put this IDNumber in the proper place in the MD object. Then one could use the option
IDNumberDropList -> "P" to specify that only principal should be used in the estimation.

Note that STRIPs data can be read correctly with ReadData, and STRIPs data can be mixed with other security types as
well. 

ü CP objects

Here is the InputForm of the CP object created by ConstructPayments from mdsub:

cpsub = ConstructPayments[mdsub];
InputForm[cpsub]

CP[{1988, 7, 19}, {{100}, {100}, 
   {5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 
    5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 
    5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 
    5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 5.875, 
    5.875, 5.875, 5.875, 5.875, 5.875, 105.875}, 
   {4.4375, 4.4375, 4.4375, 4.4375, 4.4375, 4.4375, 
    4.4375, 4.4375, 4.4375, 4.4375, 4.4375, 4.4375, 
    4.4375, 104.4375}}, {{15}, {323}, 
   {26, 210, 391, 575, 756, 940, 1121, 1308, 1489, 1672, 
    1853, 2036, 2217, 2401, 2582, 2766, 2948, 3135, 3313, 
    3499, 3680, 3863, 4044, 4227, 4409, 4593, 4774, 4958, 
    5139, 5326, 5504, 5690, 5871, 6054}, 
   {181, 362, 545, 726, 909, 1090, 1274, 1456, 1640, 1821, 
    2008, 2186, 2372, 2553}}, {0, 0, 155, 5}, {2, 2, 2, 2}, 
  False, Hold[mdsub]]

There are seven items contained in the object, all of which can be extracted (i.e., selected) by the CPSelectors: Quote-
Date,  Payments,  DaysToPayments,  AccruedDays,  PaymentsPerYear,  FullPrice,  and  WhenceMD.  The
other CPSelectors calculate what they return on demand.
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ü DF objects

Here is the InputForm of the DF object created by DiscountFunction from the CP object given above:

dfsub = DiscountFunction[cpsub, MaximumMaturity -> 16.6, 
Knots -> 0, FunctionalForm -> Delta, LambdaValue -> 0]

-DF[{1988, 7, 19}]-

InputForm[dfsub]

DF[{1988, 7, 19}, InterpolatingFunction[{0, 6064}, 
   {{0, 0, {1, 0}, {0}}, 
    {6064, 0, {0.2117929536117513, 
      -0.00001535208454085584, 1.890324679160249*10^-8, 
      1.195289841813016*10^-12}, {0, 0, 6064}}}], 0, 3, 
  Delta, {0.03298646745656697, -0.001870960109926045, 
   -(2.131225215862287*10^-6), 0.00003979571182810559}, 
  {1, 2, 3, 4}, 0.001091609115236887, 0.00872483862588425, 
  {0.996796948422626, -0.04007415733109442, 
   -0.00004561217393878103, 0.000851702378932987}, 
  {0, 6064}, {{0, 0, 0, 0}, 
   {0, 0.005933603944256982, -0.01007417955412868, 
    0.001370051508054565}, 
   {0, -0.01007417955412868, 0.01787216815776105, 
    -0.002587323349510649}, 
   {0, 0.001370051508054565, -0.002587323349510649, 
    0.0004489482759882174}}, 
  {1, 0.5944046122549978, 0.2428246338303346, 
   0.2117929536117513}, True, 0, True, 2, Automatic, 3, 
  0.001091609116883774, Hold[cpsub]]

There are nineteen items contained in the object,  all of  which can be extracted (i.e.  selected) by the DFSelectors:
QuoteDate, FinalSpline, Lambda, EffectiveParameters, FunctionalForm, PriceError, KeepList,
ResidualVariance,  AverageAbsoluteError,  Significance,  Knots,  BetaHatCovarianceMatrix,
BetaHat, Restriction, DropByTerm, FixedLambda, TuningParameter, ObservationWeights, Spline-
Order, GCVValue, and WhenceCP. The remaining DFSelectors calculate what they return on demand. 
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