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Abstract. We analyze the doubling strategy in static and dynamic settings
with a countable state space. We apply the no-arbitrage and no-free-lunch de-
finitions of Kreps (1981), which (in the dynamic setting) put the focus on the
gain produced by a self-financing trading strategy, rather than on the strategy
itself. By applying the Krepsian notions of no arbitrage and no free lunches to
dynamic models, instead of the notions common in standard practice, we avoid
the situation where there are no free lunches at the same time there are arbi-
trage opportunities. Depending on the topological space one adopts, the doubling
strategy is either (i) not in the space of payouts (and hence not a free lunch),
(ii) in the space and a free lunch, or (iii) in the space but not a free lunch. In
the latter case, which requires ‘near risk-neutrality’, the doubling strategy has a
bubble component in the sense of Gilles and LeRoy (1997).

Introduction

In their seminal paper, Harrison and Kreps (1979, p. 400) refer to

the well known doubling strategy by which one is sure to win at
roulette: Bet on red, and keep doubling your bets until red comes
out. To effect this strategy, you must be able to bet a countable
number of times, although you will only bet a finite number of times
in any particular state. [Emphasis added.]

This strategy is almost universally viewed as a pathological problem in dynamic
security market models with infinite state spaces–a problem that requires side
conditions to rule it out. Yet no special side conditions are required to rule out
the doubling strategy in static models with infinite state spaces. We show that
the static analysis can be applied to the dynamic setting in a natural way, thereby
rendering the side conditions unnecessary.
The doubling strategy poses a problem because it costs nothing and but converges

with probability one to something positive. The side conditions typically restrict
the trading strategies in such a way as to remove the doubling strategy from the
choice set. By contrast, we view the convergence of the doubling strategy as a
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topological issue. We see no compelling reason to adopt the topology of convergence
in probability that underlies the convergence of the doubling strategy according to
the standard analysis. With a stronger topology–such as the norm topology–fewer
sequences converge and more functions are continuous. In many cases, the doubling
strategy fails to converge in the norm topology.
A benefit of our approach is that the notions of arbitrage opportunities and free

lunches that Kreps (1981) formalizes in the static setting can be directly applied to
the dynamic setting. According the Kreps, ‘no arbitrage’ is a linear-algebraic con-
cept, while ‘no free lunches’ is a topological concept. Moreover, there is a hierarchy:
‘no free lunches’ implies ‘no arbitrage opportunities’. This contrasts with what has
become standard practice in dynamic security market models: The linear-algebraic
notion of ‘no arbitrage’ is missing. In its place, the dynamic notion of ‘no arbitrage’
is built on an implicitly topological foundation: A gain process generated by a self-
financing trading strategy is allowed to converge in the topology of convergence in
probability, regardless of the topological space on which preferences are defined. It
should not be surprising that two distinct topologies would be at war with each
other. Indeed, we provide an example in which, according to standard practice,
there are no free lunches and yet there are arbitrage opportunities.
The doubling strategy can be viewed as the archetypical free-lunch sequence in

the sense of Kreps (1981). Kreps emphasized the importance of fixing a space
X of commodity bundles (security payouts) over which utility is defined, a cone
K to determine positiveness, and a topology τ to determine continuity. Pricing
operators, preferences, and free lunches can only be defined in terms of the triple
(X,K, τ). Whether a sequence (or net, more generally) converges to a payout
in chosen space depends crucially on the chosen topology. Whether an agent’s
preferences are continuous depends crucially on the chosen topology. By the same
token, whether a linear functional (such as a price system) is continuous depends
on the topology.
We embed the doubling strategy in a simple countable state space that we treat

first in a static setting and then in a dynamic setting. In the static setting, we
consider a number of topological spaces, including the space of charges. Depending
on the topological space one adopts, the doubling strategy is either (i) not in the
space of payouts (and hence not a free lunch), (ii) in the space and a free lunch,
or (iii) in the space but not a free lunch. In the latter case, which requires what
we call ‘near risk-neutrality’, the doubling strategy has a bubble component in the
sense of Gilles and LeRoy (1997).1 One of the examples we treat is a static version
the example of Back and Pliska (1991).2

In the dynamic setting, we append a filtration to the probability space of the
static setting and introduce stock-price dynamics adapted to the filtration. After
characterizing the gain processes from self-financing trading strategies and intro-
ducing the state-price process, we identify the space of marketed securities with the

1Gilles and LeRoy (1997, Section 6.3) describe how their analysis applies in this case.
2Werner (1997) provides extensive treatment of the same static version of their example that we

present here. In a related static model Gilles and LeRoy (1998) discuss many of the issues raised
by Back and Pliska.
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set of stopped gain processes. This identification allows us to directly apply Kreps’
analysis in the dynamic setting, which is the primary contribution of the paper. As a
consequence, we are able to identify (i) the absence-of-arbitrage conditions with the
existence of a state-price process (we include strict positivity by definition) and (ii)
the existence of an equivalent martingale measure with the existence of a uniformly
integrable state-price process. Moreover, we show that if the state-price process has
limit points in the topological dual space, then there are no free lunches.
Arbitrage and free lunches are about getting something for nothing. As such they

are about the gains that are produced by self-financing trading strategies rather
than the trading strategies themselves. Our approach puts the focus on the gain
process rather than on the trading strategy that generates the gain. In addition,
our topological approach enables us to accommodate the Gilles and LeRoy (1997)
model of rational bubbles; we incorporate their analysis of the doubling strategy
into an explicitly dynamic model.
To highlight the differences between our approach and the standard approach

of analyzing dynamic security market models, we revisit the example of Back and
Pliska (1991) in their dynamic setting. We keep the probability space and the
underlying state prices that are generated by their stock-price dynamics. We then
modify the stock-price dynamics and apply the analysis of Kreps. We find there
are no free lunches (in L∞ equipped with the sup norm topology), and a fortiori
there are no arbitrage opportunities. This is not surprising since we have changed
neither the measure nor the state prices. However, if we were to adopt the standard
definition of no arbitrage (as Back and Pliska do), the very same economy must be
said to have arbitrage opportunities, even though there are no free lunches. The so-
called arbitrage opportunities appear because the trading strategy that implements
the doubling strategy is fundamentally bounded: The number of shares of the stock
that are held is bounded, the amount borrowed is bounded, and the gain is bounded.
This allows the doubling strategy to be an arbitrage by their definition, even though
it is not a free lunch because it does not converge in the topological space.
Although we restrict ourselves to the countable case in this paper, our approach

applies more generally. As part of our ongoing research, we are in the process of
extending our approach to the continuous-time Black—Scholes model and to the
general class of semi-martingales.

Outline of paper. In Section 1, we provide a quick summary of Kreps (1981). In
Section 2 we present the model in its static setting, and in Section 3 we present the
model in its dynamic setting.

1. Kreps: Arbitrage and free lunches

In this section, we provide a quick summary of Kreps (1981), focusing narrowly
on what is important for our analysis.
In what follows, X is a real linear space, K is a cone in X with the origin deleted,

τ is a linear topology on X. Ψ is the set of τ continuous and K strictly positive
linear functionals on X. M is a subspace of X that represents marketed bundles of
goods that can be constructed from a set of marketed securities M0 ⊆ X. (We will
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typically assume there are an infinite number of marketed securities.) In particular,
M is the span of M0, such that m ∈ M if m =

P
i λimi for mi ∈ M0 where there

are a finite number of non-zero λi. π is a linear functional on M ⊆ X (representing
the market prices of payoffs in M) constructed from a function π0 : M0 → R as
follows: π(m) =

P
i λi π0(mi) for m =

P
i λimi ∈M .

Kreps defines what he calls a free lunch in an infinite-dimensional space: A free
lunch is a net {(mα, xα)} ⊆M ×X and a bundle k ∈ K such that3

(i) mα − xα ∈ K ∪ {0} for all α, (ii) xα τ→ k, and (iii) lim
α

π(mα) ≤ 0. (1.1)

We cannot emphasize too strongly that the convergence of xα to k in (1.1) depends
on the topology τ . The absence of arbitrage is defined as follows: The pair (M,π)
admits no arbitrage opportunities if

m ∈M ∩K =⇒ π(m) > 0. (1.2)

The absence of arbitrage is necessary for the absence of free lunches, but not suffi-
cient in general. Note that the absence of arbitrage pertains only to the marketed
subspace M , while the absence of free lunches pertains its topological closure [M ].
Kreps defines the viability of preferences. An agent is specified by a complete

and transitive binary relation % on X representing the agent’s preferences for net
trades. Preferences are convex, τ continuous, and K strictly increasing if they
satisfy (respectively) the following three conditions:

x, x0 % x00 and λ ∈ [0, 1] imply λx+ (1− λ)x0 % x00 (1.3a)

for all x ∈ X, the sets {x0 ∈ X : x % x0} and {x0 ∈ X : x0 % x} are closed in τ
(1.3b)

for all x ∈ X and k ∈ K, x+ k Â x. (1.3c)

The pair (M,π) is said to be viable if there is some convex, τ continuous, and
strictly increasing preference relation % on X and some m∗ ∈M such that

π(m∗) ≤ 0 and m∗ % m for all m ∈M such that π(m) ≤ 0. (1.4)

Here are two of the main theorems that Kreps presents. Take as given the space—
cone—topology triple (X,K, τ).

Theorem 1.1 (Extension). The pair (M,π) is viable if and only if there exists
ψ ∈ Ψ such that ψ extends π to all of X.
Theorem 1.2 (No free lunches). If the pair (M,π) is viable, then the pair admits
no free lunches.

3Nets are generalizations of sequences. In some topological spaces, sequences are insufficient
to characterize convergence. Clark (1993) provides a stronger notion of a free lunch (for which
π(mα) ≤ 0) that is for all intents and purposes equivalent.
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2. Static setting

Here we present the ideas in this paper in a simple static setting where we apply
the Krepsian analysis.4 We refer the reader to Appendix A for omitted details.5

Let N = {1, 2, 3, · · · } be the set of natural numbers. All the spaces we consider
are subspaces of RN, the vector space of all real sequences on N. Take as given
the measure space (N, 2N, P ), where 2N is the set of all subsets of N, and P is a
probability measure characterized by Pω := P [{ω}] > 0 and

P∞
ω=1 Pω = 1. For

example, Pω = ρ (1− ρ)ω−1, where 0 < ρ < 1.
The set of marketed claims M0 is comprised of a complete set of Arrow—Debreu

securities δi(ω) = 1{i}(ω) and a ‘bond’ that pays one unit in every state, B(ω) = 1.
The given prices of the marketed securities are π0(δi) = Γi and π0(B) = 1. By

definition, m ∈ M if and only if m = α0B +
Pi∗
i=1 αi δi, for some i

∗ ∈ Z+ =
{0, 1, 2, · · · }. The state-by-state payoffs for m ∈M are

m(ω) =

(
α0 + αω ω ≤ i∗
α0 ω > i∗.

(2.1)

Define the pricing functional π :M → R as

π(m) := α0 π0(B) +
i∗X
i=1

αi π0(δi)

= α0 +
i∗X
i=1

αi Γi

=
i∗X
i=1

(α0 + αi)Γi + α0

Ã
1−

i∗X
i=1

Γi

!
.

(2.2)

The last line of (2.2) expresses π(m) in terms of the prices of the first i∗ Arrow—
Debreu securities and the price of the portfolio’s ‘tail’. It is convenient to reexpress
the pricing functional:

π(m) = EP [my] + α0
¡
1−EP [y]¢ , (2.3)

where

y(ω) := Γω/Pω

EP [my] =
∞X
ω=1

m(ω) y(ω)Pω =
∞X
ω=1

m(ω)Γω

EP [y] =
∞X
ω=1

y(ω)Pω =
∞X
ω=1

Γω.

4Werner (1997) analyzes a static version of the example in Back and Pliska (1991).
5Appendix A is incomplete.
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Absence of arbitrage. We now address the absence of arbitrage opportunities.
For m ∈ M ∩ K, we must have m(ω) ≥ 0 for all ω ∈ N, with at least one strict
inequality. If every Arrow—Debreu security and every tail has a positive price, then
there are no arbitrage opportunities. Specifically, if

Γi > 0 for all i ∈ N and
∞X
i=1

Γi ≤ 1, (2.4)

then m ∈M ∩K =⇒ π(m) > 0. We can reexpress (2.4) in terms of y:

y(ω) > 0 for all ω ∈ N and EP [y] ≤ 1. (2.5)

No free lunches. Before we address free lunches per se, we consider the closure
of M in the topological space (X, τ). Let `p(P ) = Lp(N, 2N, P ) denote the space
of sequences for which x ∈ `p(P ) if kxkPp < ∞, and let τPp denote the topology of
convergence in the `p(P ) norm.

Closure of M in (X, τ). Let (X, τ) = (`p(P ), τPp ). Note that M 6= X even though
there is a complete set of Arrow—Debreu securities in M . Let [M ]τ denote the
topological closure of M in τ . We now show that [M ]τ = X = `p(P ) for p < ∞.
Every element x ∈ X can be expressed in terms of Arrow—Debreu securities: x =P∞
i=1 αi δi, where kxkPp = (

P∞
ω=1 |αω|p Pω)1/p < ∞. Define xj :=

Pj
i=1 αi δi. For

p <∞, limj→∞ kx− xjkPp = 0, confirming xj
τPp−→ x. The situation is different for

`∞(P ). For example, for {1, 1, 1, · · · }, the sup norm does not decrease in the tail.
Without access to the bond,

[M ]τ = {x ∈ RN : limi→∞ xi = 0}.
With the bond, the closure is larger, but still not the entire space:

[M ]τ = {x ∈ RN : x∞ = limi→∞ xi exists in R}.
Finally, let (X, τ) = (`1(P )∗∗, w∗). The closure of M in `1(P ) with the weak
topology is `1(P ) as before. Since `1(P ) is dense in `1(P )∗∗, the weak∗ closure
is [M ]τ = `

1(P )∗∗. The use of nets, however, is required to achieve the closure.

No free lunches. As noted in Section 1, Ψ ⊂ X∗ is the set of strictly positive
continuous linear functionals on (X, τ). Theorems 1.1 and 1.2 imply the following:
If π extends to some ψ ∈ Ψ , where ψ(m) = π(m) for all m ∈ M , then there are
no free lunches. We investigate the possibility of extending π in various topological
spaces. In all cases, let K = X+ \ {0}.
First let (X, τ) = (`p(P ), τPm), where τ

P
m is the topology of convergence in measure.

As shown in Appendix A, Ψ = ∅ in this case. Therefore, a strictly positive π cannot
be extended and there exist free lunches.6

6Kreps showed in an example that it is not be possible to generate any free lunches if the market
is sufficiently incomplete. However, the market here is sufficiently complete to ensure the existence
of free lunches absent a suitable extension of π.
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Next let (X, τ) = (`p(P ), τPp ) where 1 ≤ p < ∞, in which case X∗ = `q(P ),
where q = p/(p − 1). Every continuous linear functional ψ on (X, τ) has a Riesz
Representation

ψ(x) =
∞X
ω=1

x(ω) y(ω)Pω = E
P [x y], (2.6)

where y ∈ X∗. Comparing (2.3) with (2.6), we must have EP [y] = 1. Assuming
this holds, the condition for π to extend to ψ reduces to¡kykPq ¢q = ∞X

ω=1

y(ω)q Pω =
∞X
ω=1

Γ qω P
1−q
ω =

∞X
ω=1

Γ p/(p−1)ω P 1/(1−p)ω <∞ (2.7)

for p > 1. For p = 1, the condition is that y be bounded. On the other hand, if
EP [y] < 1, then ψ(B) 6= π0(B) = 1. In this case, π cannot be extended.
Now let (X, τ) = (`∞(P ), τM ), where τM is the Mackey topology; i.e., the

strongest topology for which X∗ = `1(P ). Since y ∈ `1(P ) by construction, we
only need to check ψ(m) = π(m) for all m ∈M . In this case, the representation for
ψ(x) is given by (2.6); hence, extension requires EP [y] = 1.
Now let (X, τ) = (`∞(P ), τP∞). The dual space is X∗ = `∞(P )∗ = `1(P )∗∗, where

`1(P ) ⊂ `1(P )∗∗. In this case, the Krein—Rutman Theorem guarantees the extension
property in L∞ of the pair (M,π) whenever the absence of arbitrage is satisfied (by
virtue of the non-empty interior of L∞+ ).7 There are two cases to consider. First,
suppose EP [y] = 1. In this case, the extension of π has the representation given
in (2.6), which indeed agrees with π on M . Second, suppose EP [y] < 1. In this
case, the extension of π does not have such a representation. A more general
representation involving finitely-additive set functions does exist. For x ∈ `∞(P ),
we have

ψ(x) = EP [x y] +

Z
Ω
xdΦ,

where Φ ∈ pa is a pure charge such that RΩmdΦ = α0 (1− EP [y]) for all m ∈ M .
It should be noted that Φ is not uniquely identified, which is not surprising given
the incompleteness of the market in (`∞(P ), τP∞).
Finally, let (X, τ) = (`1(P )∗∗, w∗), the dual of which is `∞(P ). If y ∈ `∞(P ),

then π extends to ψ, where for x ∈ `1(P )∗∗, we have

ψ(x) = EP [x1 y] +

Z
Ω
y dϕ,

where x = x1 + x⊥, with x1 ∈ `1(P ), x⊥ ∈ `1(P )⊥, and ϕ ∈ pa is the pure charge
that corresponds to x⊥.

7On may think of the Krein—Rutman Theorem as the ‘flip side’ of the Hahn—Banach Theorem.
Here is a statement of the theorem in its geometric form [see Holmes (1975)]:

Theorem 2.1 (Krein—Rutman). Let X be an ordered linear space, M be a subspace of X, K be
the positive cone, and M ∩K have an interior point of K. Then any positive linear functional on
M admits an extension as a positive linear functional on X.



8 MARK FISHER AND CHRISTIAN GILLES

Bubbles à la Gilles and LeRoy. Gilles and LeRoy (1992, 1997) present two concep-
tually different models of bubbles, both of which appeal to the theory of charges for
the representation of values. Gilles and LeRoy (1992) model bubbles in the price
system, while Gilles and LeRoy (1997) model payout bubbles.
First, we address bubbles in the price system. Let (X, τ) = (`∞(P ), τP∞) and

assume EP [y] < 1. Given x ∈ X, Gilles and LeRoy (1992) define the fundamental
component as EP [x y] and the bubble component as ψ(x) − EP [x y] = R

Ω xdΦ.

Given x =
P∞
j=1 αj δj , define xi :=

P∞
j=1 αj δj . Note xi

P−→ x. If xi
τ−→ x, then the

bubble value is zero. The bubble in the price system is reflected in the value of the
bond: The fundamental value is EP [y] and the bubble value is 1−EP [y] = RΩ dΦ.
In this case, the value of the probability limit is greater than the limit of the values.
Now we address payout bubbles. Let (X, τ) = (`1(P )∗∗, w∗) and assume y ∈

`∞(P ) so that π extends to ψ. Given x ∈ X, where x = x1 + x⊥, Gilles and
LeRoy (1997) define the fundamental value as EP [x1 y] and the bubble component
as ψ(x) − EP [x1 y] = R

Ω y dϕ. Consider {xi}∞i=1, where xi ∈ `1(P ) for all i ∈ N,
supi∈N kxikP1 < ∞, xi P−→ x1 ∈ `1(P ), and v = limi→∞ ψ(xi) exists. Alaoglu’s
Theorem guarantees the existence of limit points in `1(P )∗∗, all of which have value
v. Then the fundamental value of the limit points is EP [x1 y] and the bubble value
is v − EP [x1 y]. For example, let y ≡ 1 and xi = Γ−1i δi, so that ψ(xi) = 1 and

kxikP1 = 1 for all i ∈ N, and xi P−→ 0. Consequently, the fundamental value is 0
and the bubble value is 1. In this case, the value of the probablity limit is less than
the limit of the values.

Equivalent measure. Consider a topological space (X, τ) = (`p(P ), τPp ) and a mar-

keted subspaceM ⊆ X. Assume y(ω) > 0 for all ω ∈ N and EP [y] = 1. These condi-
tions are sufficient to define an equivalent measure Q, where Q[{ω}] = y(ω)P [{ω}].
The Radon—Nikodym derivative is dQ/dP = y ∈ `1(P ) and dP/dQ = 1/y ∈ `1(Q).
Whenever EP [|x y|] <∞, we have EP [x y] = EQ[x].
We now show that if an equivalent measure Q exists, π extends to ψ ∈ Ψ for

(X̂, τ̂) = (`1(Q), τQ1 ). First, note M ⊆ X̂. Let ψ(x) = EQ[x] for all x ∈ X̂, so that
ψ(m) = EQ[m] = EP [my] = π(m) for all m ∈ M . This does not require y ∈ X∗,
and we cannot conclude EP [x y] exists for all x ∈ X unless X = `∞(P ). Therefore,
there are no free lunches in (X̂, τ̂) regardless of whether there are free lunches in
(X, τ).

We now show that X̂ 6⊆ X. Given dQ/dP = y ∈ `1(P ), if x ∈ X and y ∈ X∗,
then x y ∈ `1(P ) and x ∈ `1(Q). We also have dP/dQ = 1/y ∈ `1(Q). However,
1/y 6∈ X without further conditions. Under what conditions is k1/ykPp finite?

k1/ykPp =
Ã ∞X
ω=1

Γ−pω P 1+pω

!1/p
.

For Pω = ρ (1 − ρ)ω−1 and Γω = ζ (1 − ζ)ω−1, we have k1/ykPp < ∞ if ρ = ζ or

ρ > 1−(1−ζ)p/(1+p). Compare this with the no-free lunch condition kykPp/(p−1) <∞,
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which is ρ = ζ or ρ < 1− (1− ζ)p. For ζ = 1/2 and p = 1, we have 1− (1/2)1/2 <
ρ ≤ 1/2.

Preferences. We want to emphasize that the choice of the topological space of pay-
outs (X, τ) is a choice about the continuity of preferences. Kreps’ Extension Theo-
rem 1.1 says that if π cannot be extended, there are no continuous preferences (that
are also strictly increasing and convex) that can support the price system. Thus,
the adoption of the topological space (`p(P ), τPm), for which extension can never oc-
cur (owing to Ψ = ∅), rules out such continuous preferences. For example, consider
the following ‘risk-neutral’ utility function: U(x) = EP [x] =

P∞
ω=1 x(ω)Pω, which

is linear and convex. This utility function is not continuous on (`p(P ), τPm).

The doubling strategy. Here is an informal statement of the classic doubling
strategy. Make a bet that pays 1 if ‘red’ occurs on the first spin of the wheel and
pays −1 otherwise. Stop if ‘red’ occurs (and keep 1); otherwise borrow 1 to pay
the loss and double the bet to 2 for the next spin. Stop if ‘red’ occurs (pay off
the debt and keep 1); otherwise borrow 3 to payoff the loss and the accumulated
debt and redouble the bet to 4. Continue this pattern, but stop after the n-th
spin regardless of the outcome. The doubling strategy refers to the limiting case
as n goes to infinity; in other words, continue until ‘red’ first occurs. This limiting
strategy converges in measure to the number 1.
Now we turn to a formal statement. Assume there are no arbitrage opportunities.

The doubling strategy is a sequence of portfolios {zi}∞i=1 ⊂ M with the following

two features: π(zi) = 0 for all i ∈ N and zi P−→ 1. The i-th portfolio is given by

zi := (1− βi)B + βi

iX
j=1

δj , where βi :=
1

1−Pi
j=1 Γj

. (2.8)

The state-by-state payouts to zi are

zi(ω) =

(
1 ω ≤ i
1− βi ω > i.

The doubling-strategy sequence {zi} converges almost surely to 1:
lim
i→∞

zi(ω) = 1 for all ω ∈ N.

Almost sure convergence implies convergence in measure.
In the classic doubling strategy (described above), Γi = 2

−i and βi = 2i, so that
each time ‘red’ fails to appear, there is a literal doubling. In general, however, the
sequence {βi} does not literally involve doubling. It is increasing, with β1 > 1. It
is unbounded if

P∞
ω=1 Γω = 1; otherwise, it is bounded.

If the pricing functional π extends to ψ ∈ Ψ , then there are no free lunches, and
consequently the doubling strategy has no limit points in K. We now consider a
number of topological spaces to examine the conditions under which the doubling
strategy does in fact converge or have limit points in K. First, the doubling strategy
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is always a free lunch in (`p(P ), τPm), because Ψ = ∅. Next, let us examine the
convergence of {zi} in (X, τ) = (`p(P ), τPp ). In particular,

k1− zikPp = βi

Ã ∞X
ω=i+1

Pω

!1/p
=

³
1−Pi

ω=1 Pω

´1/p
1−Pi

ω=1 Γω
. (2.9)

Clearly, if
P∞

ω=1 Γω < 1, then limi→∞ k1 − zikPp = 0 for 1 ≤ p < ∞, but not for
p = ∞. On the other hand, if P∞ω=1 Γω = 1, the convergence of {zi} depends on
the limiting properties of Pω and Γω.
Under what circumstances is the doubling strategy not a free lunch and yet is

in (X, τ) = (`1(P )∗∗, w∗)? We assume
P∞

ω=1 Γω = 1, for otherwise the doubling
strategy would be a free lunch in `1(P ) ⊂ `1(P )∗∗. In addition, we require y ∈
`∞(P ); i.e., the boundedness of y. If {zi} is bounded in `1(P ), then it will have
limit points in `1(P )∗∗:

kzikP1 =
iX

ω=1

Pω + (βi − 1)
∞X

ω=i+1

Pω = 1− 2
Ã ∞X
ω=i+1

Pω

!
+

P∞
ω=i+1 PωP∞
ω=i+1 Γω

.

We see that the boundedness of {zi} in `1(P ) requires 1/y ∈ `∞(P ).8 We refer
to the case where both y and 1/y are bounded as ‘near risk neutrality.’ The risk
neutral case is characterized by y ≡ 1.9

The suicide strategy. The suicide strategy is closely-related to the doubling strategy:

{Zi}∞i=1, where Zi = 1− zi [see (2.8)]. Note that Zi P−→ 0, π(Zi) = 1 for all i ∈ N,
and kZikPp = k1 − zikPp [see (2.9)]. If {Zi} is bounded in `1(P ), then it has pure
charge limit points. If it converges in `1(P ), then it converges to zero.

Two examples. Here we provide two arbitrage-free examples that we will use
throughout the paper to investigate free lunches in general and the doubling strategy
in particular. In both examples, we adopt the probability measure Pω = ρ (1−ρ)ω−1,
where 0 < ρ < 1.

Example 1. In this example, Γω = ζ (1−ζ)ω−1, where 0 < ζ < 1, so that
P∞

ω=1 Γω =

1 and y(ω) = Γω/Pω = (ζ/ρ)
¡
(1− ζ)/(1− ρ)¢ω−1. There are no arbitrage opportu-

nities and an equivalent measure exists: Qω = Γω. The doubling strategy sequence
is βi = (1− ζ)−i. The classic doubling strategy is given by ρ = ζ = 1/2. If ρ ≤ ζ,
then y is bounded and y ∈ `∞(P ). The `q(P ) norm is given by

kykPq =


1 ρ = ζ³

ζq (1−ρ)q ρ1−q
(1−ρ)q−(1−ρ) (1−ζ)q

´1/q
ρ < 1− (1− ζ)q/(q−1)

∞ otherwise.

8If 1/y is bounded, then no pure charges have zero value (other than the zero charge). If
yi → 0, then all pure charges have zero value. Otherwise, (1/y is not bounded and yi 6→ 0) some
pure charges have zero value and others do not.

9Risk neutrality is sufficient for y ≡ 1, but not necessary.
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Given q = p/(p−1), the condition kykPq <∞ is equivalent to ρ = ζ or ρ < 1−(1−ζ)p.
We consider two topological spaces. First, let (X, τ) = (`p(P ), τPp ), so that

X∗ = `p/(p−1)(P ). If ρ < 1 − (1 − ζ)p or ρ = ζ, then y ∈ X∗, in which case there
are no free lunches. For the doubling strategy, we have

lim
i→∞

k1− zikPp = lim
i→∞

Ã
(1− ρ)1/p
1− ζ

!i
=


∞ ρ < 1− (1− ζ)p
1 ρ = 1− (1− ζ)p
0 ρ > 1− (1− ζ)p.

Clearly, the doubling strategy does not converge when π extends. There is one
case where the doubling strategy does not converge even though π does not extend:
ρ = 1 − (1 − ζ)p for p > 1. Nevertheless, there are free lunches in this case,10 but
the doubling strategy is not one of them.
Second, let (X, τ) = (`1(P )∗∗, w∗). In this case, X∗ = `∞(P ). Therefore, there

are no free lunches if ρ ≤ ζ. There will be limit points in X if the doubling-strategy
gain is bounded in `1(P ). We have

lim
i→∞

kzikP1 = lim
i→∞

1− 2 (1− ρ)i +
µ
1− ρ
1− ζ

¶i
=


∞ ρ < ζ

2 ρ = ζ

1 ρ > ζ,

which shows that {zi} is bounded for ρ ≥ ζ. For ρ < ζ, there are no free lunches,
but {zi} is not bounded in `1(P ), and there are no limit points. For ρ > ζ, there
are free lunches, and {zi} is bounded in `1(P ), and therefore it has free-lunch limit
points in X. For ρ = ζ, there are no free lunches, and the sequence {zi} is bounded
in `1(P ). Consequently, Alaoglu’s Theorem guarantees limit points in `1(P )∗∗. As
Fisher and Gilles show, the `1(P ) component of every limit point is B. The `1(P )⊥
component is not uniquely identified by the sequence {zi}. However, if {Gα}α∈A is
a convergent subnet of {zi}, then Gα

w∗→ G ∈ `1(P )∗∗, where G = B+G∗, B ∈ `1(P ),
and G∗ ∈ `1(P )⊥; note that B > 0, but G∗ < 0, so G 6∈ K. In conclusion, the
only case for which the doubling strategy is in the space and not a free lunch is the
‘risk-neutral’ case ρ = ζ.
Note the following about the limit of the `1(P ) norm of the suicide strategy and

the limit of 1/y:

lim
i→∞

kZikP1 = lim
ω→∞

1

y(ω)
=


∞ ρ < ζ

1 ρ = ζ

0 ρ > ζ.

For ρ > ζ, the suicide strategy converges in the `1(P ) norm to zero (since y is not
bounded). For ρ < ζ, y → 0 and all pure charges have zero value. [So why does the
norm explode?]

10We need to show one.
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Example 2. This example is related to Back and Pliska (1991) and Werner (1997).11

In this example, Γω =
¡
(2ω) (1 + ω)

¢−1
> 0, where

P∞
ω=1 Γω = 1/2. Let (X, τ) =

(`p(P ), τPp ). For 1 ≤ p <∞, π cannot be extended and there are free lunches. For
p =∞, the Krein—Rutman Theorem guarantees π can be extended and consequently
there are no free lunches. The doubling strategy sequence is βi = 2 (1 + i)/(2 + i).
We have

lim
i→∞

k1− zikPp = lim
i→∞

2 (1 + i) (1− ρ)i/p
2 + i

=

(
0 1 ≤ p <∞
2 p =∞,

which shows that the doubling strategy converges if and only if π fails to extend.

3. Dynamic setting

We adopt the measure space from the preceeding section, (N, 2N, P ), to which we
add a filtration. The information structure is given as follows. Define the following
partition of the state space into i+ 1 sets:

Ri := {{1}, {2}, · · · , {i}, {i+ 1, i+ 2, · · · }}. (3.1)

Let Fi be the set consisting of all unions of sets from Ri. Then {Fi}∞i=0 is a sequence
of increasing σ-algebras that we take as the filtration, where F0 = {∅,N} and
limi→∞ Fi = F = 2N.
We interpret Pω as the probability that ‘red’ first occurs on spin ω of (possibly

biased) roulette wheel. The conditional probability that ‘red’ occurs on the next
spin given that it has not yet occured is given by

qi+1 := P [{i+ 1}|ω > i] = Pi+1P∞
ω=i+1 Pω

.

Obviously, P [{ω : ω > i + 1}|ω > i] = 1 − qi+1. These conditional probabilities
will be used in computing conditional expectations. The geometric distribution is
a simple example: Pω = ρ (1− ρ)ω−1 and qi = ρ.
Define EPi [x] := EP [x|Fi] and note that EP0 [x] = EP [x]. In a discrete-index

setting (such as we have here), a process X is a martingale [relative to ({Fi}, P )] if
X is adapted to {Fi}, Xi ∈ `1(P ) for all i ≥ 0, and E[Xi+1|Fi] = Xi for all i ≥ 0.12
Consider a market for trading two securities at a countable number of times

0 = t0 < t1 < · · · < T .13 An example of the topological space of payouts at time
T is (X, τ) where X = `p(P ) = `p(N, 2N, P ) for 1 ≤ p ≤ ∞ and τ is τPp , the `

p(P )

norm topology.14 The price of one security (the bond or ‘money-market account’)
at time ti equals 1 in every state: Bi(ω) = 1. The state-by-state price of the second
security (the ‘stock’) at time ti is given by

Si(ω) =

(
fω ω ≤ i
gi ω > i,

(3.2)

11See also Gilles and LeRoy (1998), who address, many of the issues in a related setting.
12See Williams (1991).
13For example, T <∞ and ti = T (1− (1/2)i).
14Recall, K = X+ \ {0}, so that x ∈ K if xi ≥ 0 for all i ∈ N and xi > 0 for at least one i ∈ N.
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for i ∈ N, where fω and gi are finite and S0(ω) = g0 = 1.15 However, the sequences
{fi} and {gi} are not necessarily bounded. Note that Si(ω) is constant on each of
the sets in Ri and thus measurable with respect to Fi, so that {Si} is adapted to
the filtration.16

For fixed i, Si(ω) is a random variable; for fixed ω, Si(ω) is a ‘path’. In the
following matrix, the rows are the random variables and columns are the stock
price paths:

ω
1 2 3 4 5 · · ·

t0 1 1 1 1 1 · · ·
t1 f1 g1 g1 g1 g1 · · ·
t2 f1 f2 g2 g2 g2 · · ·
t3 f1 f2 f3 g3 g3 · · ·
...

...
...

...
...

...

(3.3)

Every price path starts at one (the value of the stock before the first flip). We may
think of (3.3) in terms of a tree structure:

t0 1
↓&

t1 f1 g1
↓ ↓&

t2 f1 f2 g2
↓ ↓ ↓&

t3 f1 f2 f3 g3
...

...
...

...
...
. . .

(3.4)

On each path, Si(ω) converges to fω. More formally, define S∞(ω) := fω and note
that Si

a.s.−→ S∞, since

lim
i→∞

Si(ω) = S∞(ω) for all ω ∈ N.
Even though Si ∈ `∞(P ) for all i ∈ N, if {fi} is unbounded, S∞ 6∈ `∞(P ).
Self-financing trading strategies. A trading strategy is a sequence of pairs
{(θBi , θSi )} adapted to the filtration, where θBi (ω) is the number of bonds held at
time ti in state ω and θ

S
i (ω) is the number of shares of stock held at time ti in state

ω. The interpretation is that θi is constant on the half-open interval [ti, ti+1), while
the (i + 1)-st spin of the wheel occurs sometime in the open interval (ti, ti+1). A
self-financing trading strategy is a trading strategy that satisfies the self-financing
condition:

θBi − θBi−1 +
¡
θSi − θSi−1

¢
Si = 0, for i = 1, 2, 3, · · · . (3.5)

15To allow for a non-zero interest rate r, let eBi(ω) = er ti be the money-market account and

define eSi := eBi Si. Then Bi = eBi/ eBi and Si = eSi/ eBi.
16Indeed, any stochastic process adapted to the filtration must have a similar structure as the

stock price.
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In other words, any change in the value of the stock holdings that comes from
rebalancing must be offset by an equal change in the opposite direction of the
value of the bond holdings. We refer to the value of the self-financing portfolio at
time ti as the gain: Gi = θBi + θSi Si. Using the self-financing condition (3.5), we
can express the dynamics of the gain as

Gi = G0 +
iX
j=1

θSj−1∆Sj , (3.6)

where G0 = θB0 + θS0 S0 = θB0 + θS0 is the initial cost of the self-financing trading
strategy and the change in the stock price is

∆Si(ω) := Si(ω)− Si−1(ω) =


0 ω < i

fi − gi−1 ω = i

gi − gi−1 ω > i.

Thus, conditional on the specified dynamics for the stock and bond prices, the gain
for a self-financing trading strategy is completely specified by the initial investment
G0 and the sequence of stock holdings {θSj (ω)}∞j=0.
The value of the stock (and hence the value of the portfolio) does not change

once ‘red’ first occurs, and thus the amount invested in the stock is irrelevant at
that point. Therefore, for simplicity we can specify

θSi (ω) =

(
0 ω ≤ i
ξi ω > i.

With this normalization, a self-financing trading strategy is completely specified by
(G0, {ξj}∞j=0). The gain generated by (G0, {ξj}∞j=0) is

Gi(ω) =

(
G∞(ω) ω ≤ i
ci ω > i,

(3.7)

where

G∞(ω) := G0 + ξω−1 (fω − gω−1) +
ω−1X
j=1

ξj−1 (gj − gj−1) (3.8a)

ci := G0 +
iX
j=1

ξj−1 (gj − gj−1). (3.8b)

By construction, Gi
a.s.−→ G∞.

We can design a trading strategy to generate G∞ = x ∈ X if the ‘spanning
condition’ holds: fi 6= gi−1 for all i ∈ N. The trading strategy that generates this
gain is

ξi =
i+1X
j=1

αij (G∞(j)−G0), (3.9)
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where

αij =


(gj−1−gj)

Qi
s=j+1(fs−gs)Qi+1

s=j(fs−gs−1)
j ≤ i

1
fi+1−gi j = i+ 1.

The preceding trading strategy involves a fundamental indeterminacy: G0 is a
free parameter in (3.9). As a consequence of this indeterminacy, any G∞ can be
paired with any G0. In other words, there is no connection between the initial
investment at time 0 and the payout on the terminal date T that the gain process
converges to almost surely. In particular, the doubling strategy is a gain process for
which G0 = 0 and G∞(ω) = 1, which satisfies (3.9).
To remove the indeterminacy, we consider only those trading strategies that have

a finite number of non-zero ξi. (We are no longer able to choose G∞ = x ∈ X
arbitrarily.) Let i∗ be the maximum index of the set of non-zero ξi and let n = i∗+1.
Then ξi = 0 for all i ≥ n. In addition, Gi = G∞ = Gn for all i ≥ n. In effect, all
proceeds are frozen at time tn and carried forward to time T in the money-market
account. We will refer to a gain with this property as a gain stopped at time tn (or
simply a stopped gain). For a stopped gain, Gi → G∞ in all modes of convergence.
There is no indeterminacy for a gain stopped at tn. Applying (3.9) to ξn = 0

shows that G0 is uniquely determined by {G∞(j)}n+1j=1 :

G0 =
n+1X
j=1

Ã
αnjPn+1
s=1 α

n
s

!
G∞(j) =

nX
j=1

Γj G∞(j) +
µ
Γn+1
kn+1

¶
G∞(n+ 1), (3.10)

assuming fj 6= gj (in addition to fj 6= gj−1), where

Γj :=
αnjPn+1
s=1 α

n
s

= kj

j−1Y
s=1

(1− ks) and kj :=
gj − gj−1
gj − fj . (3.11)

Since the gain process is stopped at time n, G∞(n+1) is the payout for all ω ≥ n+1.
Given the form of Γj in terms of {ks}js=1, we have

nX
ω=1

Γω +
Γn+1
kn+1

= 1. (3.12)

Consequently,

lim
n→∞

Γn+1
kn+1

= 1−
∞X
ω=1

Γω. (3.13)

Let the gain stopped at tn equal the payout of the n-th Arrow—Debreu security,
Gn = δn. From (3.10) we see that Γn is the initial investment for this trading
strategy, which we will refer to as the price of an Arrow—Debreu security. The ki
are ‘conditional’ state prices: Given ω > i, the price of an Arrow—Debreu security
in state i+ 1 is ki+1. Arrow—Debreu security prices are all positive if and only if

0 < kj < 1 for all j ∈ N. (3.14)

The price of a unit tail starting at n + 1 is given by Γn+1/kn+1. Therefore, the
positivity of the Arrow—Debreu security prices is sufficient for the positivity of all
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tails. Given (3.13) and (3.14), we have
P∞

ω=1 Γω ≤ 1 or equivalently Γi+1/ki+1 ≥P∞
ω=i+1 Γω. If, in addition, {ki} is bounded away from zero, then

P∞
ω=1 Γω = 1, in

which case Γi+1/ki+1 =
P∞

ω=i+1 Γω.

State-price deflator. We define the state-price process as follows:17 Y0 = 1 and

Yi =
iY
j=1

Zi, where Zi(ω) :=


1 ω < i
ki
qi

ω = i
1−ki
1−qi ω > i.

(3.15)

We require, as part of the definition of the state-price process, the strict positivity of
Yi(ω).

18 Thus, a state-price process exists if and only if the Arrow—Debreu security
prices are all positive, the condition for which is given by (3.9). We can express the
state-price process as follows:

Yi(ω) =

(
y(ω) ω ≤ i
hi ω > i,

(3.16)

where

y(ω) :=
Γω
Pω

and hi := y(i+ 1)

µ
qi+1
ki+1

¶
.

Note that EPi−1[Zi] = 1 for all i and all ω, and therefore E
P
i−1[Yi] = Yi−1E

P
i−1[Zi] =

Yi. Moreover, given the positivity of Yi, E
P [|Yi|] = EP [Yi] = 1 for all i ∈ N. Conse-

quently, (i) Yi is a martingale and (ii) the sequence {Yi} is bounded in `1(P ). Mar-
tingale convergence guarantees {Yi} converges almost surely (and hence in measure)
to an element in `1(P ). Indeed, we see from (3.16) that Yi

a.s.−→ y. Whether {Yi}
converges to y in τP1 depends on whether {Yi} is uniformly integrable (UI). In our
setting, the following five condtions are equivalent:19

(1) {Yi} is UI
(2) Yi

τP1−→ y
(3) Yi = E

P
i [y] for all i ∈ Z+

(4) EP [y] = limi→∞EP [Yi] = 1
(5)

P∞
ω=1 Γω = 1.

To summarize, if a uniformly integrable state-price process exists, it is given by
(3.16) where the following holds:

Γω > 0 for all ω ∈ N and
∞X
ω=1

Γω = 1. (3.17)

17See Appendix B for a method of computing the state-price process from the dynamics of the
stock price.

18To allow for a non-zero interest rate r, let eBi(ω) = er ti be the money-market account and

define eYi := Yi/ eBi. Then Yi = eYi eBi.
19In Condition (3), {Yi} is said to be closed by y.
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Deflated gains are martingales. Define the deflated stock and bond prices: Ŝi :=
Si Yi and B̂i := Bi Yi = Yi. The state-price process has the property that the
deflated asset prices are martingales: EPi−1[Ŝi] = Ŝi−1 and E

P
i−1[B̂i] = B̂i−1 (which

amounts to EPi−1[Yi] = Yi−1). The deflated gain, Ĝi := Gi Yi = θBi B̂i + θSi Ŝi,

inherits the martingale property: EPi−1[Ĝi] = Ĝi−1.
It remains to show EPi−1[∆Ŝi] = 0, where ∆Ŝi := Ŝi − Ŝi−1. Note that

∆Ŝi = Yi−1
¡
Zi∆Si + (1− Zi)Si−1

¢
,

and therefore EPi−1[∆Ŝi] = Yi−1EPi−1[Zi∆Si]. Since ∆Si = 0 for ω ≤ i− 1, it is
enough to show that EPi−1[Zi∆Si] = 0 for ω > i− 1, in which case

EPi−1[Zi∆Si] = qi
µ
ki
qi

¶
(fi − gi−1) + (1− qi)

µ
1− ki
1− qi

¶
(gi − gi−1) = 0, (3.18)

where we have used the conditional probabilities qi and 1 − qi in computing the
conditional expectation.

Equivalent measure. Proposition: There exists an equivalent measure if and only
if there exists a uniformly-integrable state-price deflator. Proof of the ‘if’ part: If

{Yi} is UI, then Yi τP1−→ y ∈ `1(P ) and EP [y] = 1. These conditions guarantee the
existence of an equivalent measure Q, with Radon—Nikodym derivative dQ/dP = y,
so that Qω := Q[{ω}] = y(ω)P [{ω}] = Γω for all ω ∈ N. Conversely, if there exists
an equivalent measure, then there is a Radon—Nikodym derivative y ∈ `1(P ), such
that y is strictly positive and EP [y] = 1. Then Yi = EPi [y] is a UI state-price
process.

Arbitrages and free lunches. In order to apply Kreps’ definitions of arbitrage
and free lunches to the dynamic setting, we need a correspondence between the
space of stopped gains and the marketed subspace.

The marketed subspace. Here we define the marketed subspace and a linear pricing
functional on it. We show that the space corresponds the set of stopped gain
processes of self-financing trading strategies and the pricing functional corresponds
to the initial investment.
Let the set of marketed securities be given by M0 = {B} ∪ {Si : i ∈ N}. Then

m ∈ M (the marketed subspace) if and only if m = η0B +
Pi∗
i=1 ηi Si for finite i

∗.
Note that

m(ω) = η0 +
ω−1X
j=1

ηj gj + fω

i∗X
j=ω

ηj , (3.19)

where ηj = 0 for j > i∗. Let π0(B) = π0(Si) = 1. For m ∈ M , define π(m) :=
η0 π0(B) +

Pi∗
i=1 ηi π0(Si) =

Pi∗
i=0 ηi.

For any m ∈M , define the following self-financing trading strategy: G0 = π(m)

and ξi =
Pi∗
j=i+1 ηj . This trading strategy produces G∞(ω) = m(ω). In addition,

since ξi = 0 for i ≥ n = i∗ + 1, the gain is stopped at tn, so that Gj = Gn = m for
all j ≥ n. Conversely, for any self-financing trading strategy that is stopped at tn,
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there is an m ∈ M , where m = Gn is given by (3.19) such that η0 = G0 − ξ0 and
ηi = ξi+1 − ξi. Moreover, π(m) = G0.
The preceeding correspondence establishes the following two facts: m ∈ M ∩

K ⇐⇒ Gn ∈ K and π(m) > 0 ⇐⇒ G0 > 0.

Arbitrage opportunities. Fix a space X ⊇ M and a cone K = X+ \ {0}. The
Krepsian statement of no arbitrage opportunities is m ∈ M ∩K =⇒ π(m) > 0.
This is equivalent to Gn ∈ K =⇒ G0 > 0 where Gn is any stopped gain process
generated by a self-financing trading strategy.
There are no arbitrage opportunities given a state-price process: Given Yn > 0

and EP [Gn Yn] = G0, we conclude Gn ∈ K =⇒ G0 > 0. Conversely, if there are
no arbitrage opportunities, we can construct a state-price process.

Free lunches. Fix a topological space (X, τ) where X ⊇ M and the positive cone
K = X+\{0}. Applying the Krepsian analysis, there are no free lunches if π extends
to ψ ∈ Ψ . We show that if there exists a state-price process that has limit points
in X∗, then there exists a ψ ∈ Ψ that extends π to of all X.
Consider (X, τ) = (`p(P ), τPp ), where 1 ≤ p < ∞, for which the dual space is

(X∗, τ∗) = (`q(P ), τPq ), where q = p/(p− 1). If Yi τ∗−→ y ∈ X∗, then ψ(x) = EP [x y]
for all x ∈ X and ψ(m) = π(m) for all m ∈M .
Now consider (X, τ) = (`1(P )∗∗, w∗), for which (X∗, τ∗) = (`∞(P ), τP∞). If Yi

τ∗−→
y ∈ X∗, then for all x ∈ X, where x = x1+x⊥ is the Yosida—Hewitt decomposition,
ψ(x) = EP [x1 y] +

R
Ω y dϕ, where ϕ ∈ pa is the pure charge that corresponds to

x⊥ ∈ `1(P )⊥, and ψ(m) = EP [my] = π(m) for all m ∈M ⊆ `1(P ).
Finally consider (X, τ) = (`∞(P ), τP∞), for which (X∗, τ∗) = (`1(P )∗∗, w∗). Since

{Yi} is bounded in `1(P ) and Yi P−→ y ∈ `1(P ), there exist limit points of {Yi} in
`1(P )∗∗, all of which have the form y+Υ⊥, where Υ⊥ ∈ `1(P )⊥. (If Yi τP1−→ y, then y
is the only limit point and Υ⊥ ≡ 0.) Then for all x ∈ X, ψ(x) = EP [x y] + RΩ xdΦ,
where Φ ∈ pa is the pure charge that corresponds to Υ⊥, and ψ(m) = π(m) for all
m ∈M .
Let {Gi}∞i=1 be any gain generated by a self-financing trading strategy and let

{Gα}α∈A be any subnet of {Gi}∞i=1. If there are no free lunches, then Gα
τ−→ x ∈

K =⇒ G0 > 0.

The doubling strategy. The doubling strategy is characterized by G0 = 0 and
G∞(ω) = 1. Referring to (3.9), the trading strategy that generates this gain is

ξi =
i+1X
j=1

αij =

µ
1

f1 − 1
¶ iY
j=1

fj − gj
fj+1 − gj =

 iX
j=1

fj Γj +
fi+1 Γi+1
ki+1

− 1
−1 . (3.20)

The trading strategy involves taking an initial position in the stock of 1/(f1 − 1)
and financing it with the bond so that no funds are invested. The first time ‘red’
appears, the stock position is closed and all proceeds are invested in the bond
thereafter. If the first ‘red’ has not appeared after the i-th spin, the position in
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the stock is increased by the factor (fi − gi)/(fi+1 − gi), ‘doubling’ as it were. The
boundedness of {ξi} depends on S∞(ω) = fω [see the rightmost expression for ξi in
(3.20)]. For example, if f1 = a > 1 and fi = 1/a for i ≥ 2, then

ξ0 =
1

a− 1 and ξi =
a

(a− 1) ¡(1 + a) k1 − 1¢ for i ≥ 1. (3.21)

In this case, the amount invested in the stock does not change after the second
spin of the wheel. It is important to recognize that the boundedness of the trading
strategy {ξi} plays no role in determining the existence of arbitrage opportunities
or free lunch opportunities.
Note that Gi = zi for all i ∈ N, where zi is given in (2.8), where ci = 1 − βi.

Therefore, we have already examined the properties of kGikPp . The only novelty
here is to recognize βi = ki+1/Γi+1, so that for 1 ≤ p <∞,

k1−GikPp =
ki+1
Γi+1

µ
Pi+1
qi+1

¶1/p
,

kGikP1 =
iX

ω=1

Pω + h
−1
i

iX
ω=1

Γω,

and
lim
i→∞

kGikP1 = lim
i→∞

1 + h−1i .

where hi is given following (3.16).

The suicide strategy. The suicide strategy is characterized by G0 = 1 and G∞(ω) =
0. The trading strategy that generates this gain is simply the negative of that given
in (3.20).

The buy-and-hold strategy. The buy-and-hold self-financing trading strategy
for the stock is characterized by G0 = 1 and γj = 1 for all j ∈ Z+. The gain
generated by this trading strategy is Gi = 1 +

Pn
j=1∆Sj = Si. As noted above,

Si
a.s.−→ S∞, where S∞(ω) = fω. Two questions arise. First, is S∞ ∈ X? By

construction, Si is bounded for every i ∈ N. Nevertheless, S∞ need not be bounded,
in which case S∞ 6∈ `∞(P ). For p <∞, the `p norm of S∞ is given by

kS∞kPp =
Ã ∞X
ω=1

|fω|p Pω
!1/p

,

which may or may not be finite. Second, assuming S∞ ∈ X, does Si τ−→ S∞? For
example, given (X, τ) = (`p(P ), τPp ), consider

lim
i→∞

kSi − S∞kPp = lim
i→∞

Ã ∞X
ω=i+1

|gi − fω|p Pω
!1/p

,

which may or may not be zero.

Examples. We revisit the two examples in the dynamic setting. Recall Pω =
ρ (1− ρ)ω−1, where 0 < ρ < 1.
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Example 1. Recall Γi = ζ (1− ζ)i−1. In this case, ki = ζ. Since
P∞
i=1 Γi = 1, {Yi}

is UI and Yi
τP1−→ y, where y(ω) = (ζ/ρ)

¡
(1− ζ)/(1− ρ)¢ω−1.20

Let the stock-price dynamics be given by

fi =

µ
1 + µ

µ
1− ζ
ζ

¶¶
(1− µ)i−1, and gi = (1− µ)i.

where 0 < ζ < 1 and −ζ/(1− ζ) ≤ µ < 1, µ 6= 0. In words (assuming µ > 0), the
stock price falls by 100µ percent until ‘red’ first occurs, at which point it rises by
100 (µ/ζ) (1−ζ) percent and does not change thereafter. In this case, the doubling-
strategy trading strategy is

ξi =
1

µ

µ
ζ

1− ζ
¶µ

1

(1− ζ) (1− µ)
¶i
,

which is unbounded.
If µ < 0, S∞ 6∈ `∞ (even though every element in the sequence is in `∞) since

S∞ is not bounded in that case. The `p(P ) norm of S∞ is given by

kS∞kPp =

³
1 + µ

³
1−ζ
ζ

´´p
ρ

1− (1− µ)p (1− ρ)

1/p <∞, if ρ > 1− (1− µ)−p.

This condition does not impose a constraint unless µ < 0. In order for both the
no-free-lunch condition and the condition for S∞ ∈ `p(P ) to hold, we must have
1−(1−µ)−p < ρ < 1−(1−ζ)p. For µ = −(1−ζ)/ζ, one of the two conditions must
be violated; in addition, S∞ = 0, so that the buy-and-hold strategy is the suicide
strategy.
Now let the stock-price dynamics be given as follows: f1 = a > 1, fi = 1/a for

i ≥ 2, and
gi =

1 + (a− 1) (1− ζ)i
a

.

The trading strategy that generates the doubling strategy, which is given by (3.21),
is bounded. Note that

kSi − S∞kPp =
µ
a− 1
a

¶Ã
(1− ρ)1/p
1− ζ

!i
for i ≥ 2.

Hence, the condition for Si
τ−→ S∞ is ρ = ζ or ρ < 1 − (1 − ζ)p. In other words,

S∞ is in the space if and only if there are no free lunches.

Example 2. Recall, Γi =
¡
(2 i) (i + 1)

¢−1
> 0 and

P∞
ω=1 Γω = 1/2. The state-

price process is not UI. Note that ki = (1 + i)−2. The doubling-strategy gain

is characterized by ci = −i/(i + 2), which is bounded. Of course, Gi
τPp−→ 1 for

1 ≤ p <∞, but {Gi} does not converge in τP∞, for which there are no free lunches.
20For ω > i, the price of risk is λi(ω) = (ρ− ζ)

¡
ρ (1− ρ)¢−1/2. See Appendix B.
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Back and Pliska (1991) present an example that fits into this case.21, 22 They
choose the following stock-price dynamics: fi = 2

−i (i2 + 2 i+ 2) and gi = 2−i. For
this choice of stock-price dynamics, the doubling-strategy trading strategy is

ξi =
22+i

i2 + 5 i+ 6
,

which is unbounded. Of course, we can choose different stock-price dynamics: f1 =
a > 0, fi = 1/a for i ≥ 2, and

gi =
1− i+ (4− a) a (1 + i)

2 a (2 + i)
.

For these stock-price dynamics, the doubling-strategy trading strategy, which is
given by (3.21), is bounded.
Back and Pliska define arbitrage opportunities differently than defined here. Ac-

cording to their definition, there are no arbitrage opportunities in their example. A
necessary component of the absence of arbitrage opportunities is limi→∞ fi = 0.
Thus, our modification of their example is subject to arbitrage opportunities accord-
ing to their definition because limi→∞ fi = 1/a > 0. In terms of our definitions, the
free lunches available in `p(P ) for p <∞ do not require unbounded trading strate-
gies {ξi}. Thus, according to their definitions, our example presents the following
situation in (`∞(P ), τP∞): There are arbitrage opportunities, but their are no free
lunches.

Appendix A. Mathematical preliminaries

Take as given a measure space (Ω,F , µ), where Ω = N := {1, 2, 3, · · · } is the
set of natural numbers, F = P(N) is the set of all subsets of N, and µ is a finite
measure characterized by µ[{ω}] > 0 for all ω ∈ N, where µ[N] < ∞. For the
space of commodity bundles (security payouts), let X = `p(µ) = Lp(N,P(N), µ),
for 1 ≤ p ≤ ∞.23, 24 The `p(µ) spaces of sequences are characterized as follows:
x ∈ `p(µ) if kxkµp <∞, where

kxkµp =

³P∞

ω=1 |x(ω)|p µ[{ω}]
´1/p

1 ≤ p <∞
supω |x(ω)| p =∞.

21Back and Pliska do not address viability per se. Instead, they consider the existence of an
‘optimal demand.’ For an agent constrained to consume in the positive orthant, an optimal demand
can exist even absent viability when the agent is driven to a corner. Thus, Back and Pliska find
an optimal demand exists in `p for p <∞, even though the pair (M,π) is not viable.

22Their W corresponds to our G0, their φi corresponds to our ξi−1, and they set ρ = 1/6.
23The only set in the σ-algebra P(N) with measure zero is the null set ∅. As a consequence,

given x, y ∈ X, x = y almost everywhere if and only if x(ω) = y(ω) for every ω ∈ N.
24Our use of `p is a bit nonstandard. Ordinarily, the measure is restricted to the counting

measure. In fact, we exclude it because it is not finite.
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Let τµp denote the `p(µ) norm topology. Convergence in the `p(µ) norm of a sequence

{xi} to an element x (denoted xi τµp−→ x) is characterized by

lim
i→∞

kx− xikµp = 0.

If µ[N] = 1, then µ is a probability measure, and the expectation operator is defined
by Eµ[x] :=

P∞
ω=1 x(ω)µ[{ω}] for x ∈ `1(µ).

In all cases, let K = X+ \ {0} be the positive cone of X with the origin deleted;
i.e., x ∈ K if xω ≥ 0 for all ω ∈ N and xω > 0 for at least one ω.25 Consequently, it
is sufficient to specify a topological space (X, τ).
Let `p(µ)∗ = (`p(µ), τµp )∗ denote the topological dual space of `p(µ). The elements

of `p(µ)∗ are continuous linear functionals on `p(µ). For 1 ≤ p <∞, `p(µ)∗ = `q(µ),
where 1/p+1/q = 1; for 1 < p <∞, the bi-dual (i.e., the dual of the dual) of `p(µ)
is the space itself: `p(µ)∗∗ = `p(µ).
Note that `1(µ)∗ = `∞(µ) and therefore `1(µ)∗∗ = `∞(µ)∗ However, `∞(µ)∗ 6=

`1(µ) and hence `1(µ)∗∗ 6= `1(µ). Nevertheless, `1(µ) ⊂ `∞(µ)∗ = `1(µ)∗∗. In fact,
every x ∈ `1(µ)∗∗ has the unique decomposition x = y+ z, where y ∈ `1(µ) and z ∈
`1(µ)⊥, where `1(µ)⊥ denotes the orthogonal complement of `1(µ) in `1(µ)∗∗.26 We
can make the following three identifications: (1) identify `1(µ)∗∗ with ba(P(N)), the
space of all signed charges (i.e., finitely-additive set functions) of bounded variation
on the σ-algebra P(N) of all subsets of N; (2) identify `1(µ) with ca(P(N)), the
band of all σ-additive signed measures in ba(P(N)); and (3) identify `1(µ)⊥ with
pa(P(N)), the band of all purely finitely additive signed measures of ba(P(N)).27
Let τ = w∗ be the weak∗ topology. With this topology, the topological dual of
`1(µ)∗∗ is its pre-dual `1(µ)∗ = `∞(µ).
[Discuss weak and weak∗ convergence.]
[Discuss weak topology wPp .]
Define the indicator function:

1A(ω) :=

(
1 ω ∈ A
0 ω 6∈ A,

where A is some set. An Arrow—Debreu security pays one unit in one state of the
world. The payout on the i-th Arrow—Debreu security (the security that pays 1 in
state i) is δi(ω) := 1{i}(ω).

25X+ := {x : xω ≥ 0, ∀ω ∈ N} and X++ := {x : xω > 0, ∀ω ∈ N}.
26Let X = `1(µ)∗∗. Note that x ∈ K = X+ \ {0} implies y ∈ X+ and z ∈ X+ and at least one

of the two not 0.
27See Aliprantis and Border (1999, Chapter 15) for further details.
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Let τm denote the topology of convergence in measure.28 The topology of con-
vergence in measure is generated by the metric

d(f, g) =

Z
Ω

|f − g|
1 + |f − g| dµ =

∞X
ω=1

µ |f(ω)− g(ω)|
1 + |f(ω)− g(ω)|

¶
µ[{ω}]. (A.1)

In particular, fn
µ→ f ⇐⇒ d(fn, f)→ 0. Also note that fn

a.s.−→ f =⇒ d(fn, f)→
0, where fn

a.s.−→ f is shorthand for

lim
n→∞ fn(ω) = f(ω) for all ω ∈ N.

Consider the topological space (`p(µ), τm), where 1 ≤ p ≤ ∞. The problem
with this space (with respect to viability) is that Ψ = ∅; in other words, the set of
strictly positive continuous linear functionals on (`p(µ), τm) is empty. Here is a proof
adapted from Kreps.29 If ψ is aK strictly positive continuous linear functional, then
ψ(δi) > 0. Let yi = δ1 − [ψ(δ1)/ψ(δi)] δi. By linearity ψ(yi) = 0. Now consider

d(yi, δ1) =
∞X
ω=1

 ψ(δ1)
ψ(δi)

δi(ω)

1 + ψ(δ1)
ψ(δi)

δi(ω)

µ[{ω}] = µ ψ(δ1)

ψ(δ1) + ψ(δi)

¶
µ[{i}] < µ[{i}].

By the finiteness of µ, limi→∞ d(yi, δ1) = 0 and therefore yi
µ→ δ1. Thus, if ψ is

continuous it follows that ψ(δ1) = 0, a contradiction.
The linear vector space `0(µ) = L0(N,P(N), µ) is the space of all µ-measurable

sequences with the metric topology of convergence in measure.30 L0 is a Fréchet
space (it is topologically complete), but it is not a Banach space (it does not have
a norm).

Appendix B. Computing the state-price deflator from the
stock-price dynamics

We can compute the price of risk and the state-price process from the dynamics
of the stock price by using conditional expectations to decompose changes in the
stock price into expected and unexpected components. The conditional expectation
of the stock price next period is

EPi [Si+1](ω) =

(
fω ω ≤ i
qi+1 fi+1 + (1− qi+1) gi+1 ω > i.

(B.1)

28Convergence in measure and L0 are discussed in Aliprantis and Border (1999, Chapter 12, pp.
446—451). On a finite measure space (as we assume), pointwise convergence implies convergence in
measure. Also, norm convergence in any Lp(µ) space implies convergence in measure µ. Therefore,
if {fn} converges pointwise to f , then it converges in measure, and hence f is the only candidate
for norm convergence.

29Kreps presents his proof (p. 24) in terms of pointwise convergence in the context of an example
that illustrates the proposition that the absence of free lunches does not imply viability. In his
example, there are no free lunches because the marketed subspace is one-dimensional.

30Neither `0 or `∞ depends on µ.
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Define the expected change in the stock price, mi := E
P
i [∆Si+1], where

mi(ω) =

(
0 ω ≤ i
(qi+1 − ki+1) (fi+1 − gi+1) ω > i,

and define the volatility of the change in the stock price

σi(ω) :=

(
0 ω ≤ ip
qi+1 (1− qi+1) (fi+1 − gi+1) ω > i.

Now define the ‘shock’ process:

∆εi(ω) :=


0 ω < i³
1−qi
qi

´1/2
ω = i

−
³

qi
1−qi

´1/2
ω > i,

where EP [∆εi] = 0. In addition, ∆εi has the following conditional properties:
EPi [∆εi+1](ω) = 0 for all ω ∈ N and

EPi [∆ε
2
i+1](ω) =

(
0 ω ≤ i
1 ω > i.

Note the ∆εi are not independent, since ∆εi = 0 implies ∆εi+j = 0 for all j ∈ N.
Nevertheless, they are conditionally independent in the sense that, for ω > i, future
values are independent of current and past values. We express the change in the
stock price as sum of the expected change plus the volatility of the change times
the change in the shock:

∆Si(ω) = mi−1(ω) + σi−1(ω)∆εi(ω),

where

σi−1(ω)∆εi(ω) =


0 ω < i

(1− qi) (fi − gi) ω = i

−qi (fi − gi) ω > i.

Now construct the price of risk from the drift and diffusion:

λi(ω) :=

(
0 ω ≤ i
mi(ω)
σi(ω)

= qi+1−ki+1√
qi+1 (1−qi+1)

ω > i.
(B.2)

‘Risk-neutrality’ can be characterized by qi = ki for all i. At this point, we can
construct the state-price process using Zi = 1− λi−1∆εi.
In our definitions of the ‘drift’ and ‘diffusion’ of the stock price, we have not

normalized per unit of time. We could easily do so, but the results would not
change, since the differential ‘dynamics’ are derived from the given level processes.
In particular, let

∆Si = emi−1∆ti + eσi−1∆eεi and Zi = 1− eλi−1∆eεi,
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where ∆ti := ti − ti−1, emi−1 := mi−1/∆ti, eσi−1 := σi−1/
√
∆ti, eλi−1 := λi−1/

√
∆ti,

and ∆eεi := √∆ti∆εi. Although emi, eσi, and eλi may be explosive, the properties of
Si, Zi, and Yi are unchanged.
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